FreeOfCharge2022-23/FtcRobotController/src/main/java/org/firstinspires/ftc/robotcontroller/external/samples/SensorMRGyro.java
Nathan Wang cfafe34339 initial commit
\
2021-10-19 17:53:06 -05:00

163 lines
7.3 KiB
Java

/* Copyright (c) 2017 FIRST. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted (subject to the limitations in the disclaimer below) provided that
* the following conditions are met:
*
* Redistributions of source code must retain the above copyright notice, this list
* of conditions and the following disclaimer.
*
* Redistributions in binary form must reproduce the above copyright notice, this
* list of conditions and the following disclaimer in the documentation and/or
* other materials provided with the distribution.
*
* Neither the name of FIRST nor the names of its contributors may be used to endorse or
* promote products derived from this software without specific prior written permission.
*
* NO EXPRESS OR IMPLIED LICENSES TO ANY PARTY'S PATENT RIGHTS ARE GRANTED BY THIS
* LICENSE. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
package org.firstinspires.ftc.robotcontroller.external.samples;
import com.qualcomm.hardware.modernrobotics.ModernRoboticsI2cGyro;
import com.qualcomm.robotcore.eventloop.opmode.Disabled;
import com.qualcomm.robotcore.eventloop.opmode.LinearOpMode;
import com.qualcomm.robotcore.eventloop.opmode.TeleOp;
import com.qualcomm.robotcore.hardware.Gyroscope;
import com.qualcomm.robotcore.hardware.IntegratingGyroscope;
import com.qualcomm.robotcore.util.ElapsedTime;
import org.firstinspires.ftc.robotcore.external.navigation.AngleUnit;
import org.firstinspires.ftc.robotcore.external.navigation.AngularVelocity;
import org.firstinspires.ftc.robotcore.external.navigation.AxesOrder;
import org.firstinspires.ftc.robotcore.external.navigation.AxesReference;
/*
* This is an example LinearOpMode that shows how to use the Modern Robotics Gyro.
*
* The op mode assumes that the gyro sensor is attached to a Device Interface Module
* I2C channel and is configured with a name of "gyro".
*
* Use Android Studio to Copy this Class, and Paste it into your team's code folder with a new name.
* Remove or comment out the @Disabled line to add this opmode to the Driver Station OpMode list
*/
@TeleOp(name = "Sensor: MR Gyro", group = "Sensor")
@Disabled
public class SensorMRGyro extends LinearOpMode {
/** In this sample, for illustration purposes we use two interfaces on the one gyro object.
* That's likely atypical: you'll probably use one or the other in any given situation,
* depending on what you're trying to do. {@link IntegratingGyroscope} (and it's base interface,
* {@link Gyroscope}) are common interfaces supported by possibly several different gyro
* implementations. {@link ModernRoboticsI2cGyro}, by contrast, provides functionality that
* is unique to the Modern Robotics gyro sensor.
*/
IntegratingGyroscope gyro;
ModernRoboticsI2cGyro modernRoboticsI2cGyro;
// A timer helps provide feedback while calibration is taking place
ElapsedTime timer = new ElapsedTime();
@Override
public void runOpMode() {
boolean lastResetState = false;
boolean curResetState = false;
// Get a reference to a Modern Robotics gyro object. We use several interfaces
// on this object to illustrate which interfaces support which functionality.
modernRoboticsI2cGyro = hardwareMap.get(ModernRoboticsI2cGyro.class, "gyro");
gyro = (IntegratingGyroscope)modernRoboticsI2cGyro;
// If you're only interested int the IntegratingGyroscope interface, the following will suffice.
// gyro = hardwareMap.get(IntegratingGyroscope.class, "gyro");
// A similar approach will work for the Gyroscope interface, if that's all you need.
// Start calibrating the gyro. This takes a few seconds and is worth performing
// during the initialization phase at the start of each opMode.
telemetry.log().add("Gyro Calibrating. Do Not Move!");
modernRoboticsI2cGyro.calibrate();
// Wait until the gyro calibration is complete
timer.reset();
while (!isStopRequested() && modernRoboticsI2cGyro.isCalibrating()) {
telemetry.addData("calibrating", "%s", Math.round(timer.seconds())%2==0 ? "|.." : "..|");
telemetry.update();
sleep(50);
}
telemetry.log().clear(); telemetry.log().add("Gyro Calibrated. Press Start.");
telemetry.clear(); telemetry.update();
// Wait for the start button to be pressed
waitForStart();
telemetry.log().clear();
telemetry.log().add("Press A & B to reset heading");
// Loop until we're asked to stop
while (opModeIsActive()) {
// If the A and B buttons are pressed just now, reset Z heading.
curResetState = (gamepad1.a && gamepad1.b);
if (curResetState && !lastResetState) {
modernRoboticsI2cGyro.resetZAxisIntegrator();
}
lastResetState = curResetState;
// The raw() methods report the angular rate of change about each of the
// three axes directly as reported by the underlying sensor IC.
int rawX = modernRoboticsI2cGyro.rawX();
int rawY = modernRoboticsI2cGyro.rawY();
int rawZ = modernRoboticsI2cGyro.rawZ();
int heading = modernRoboticsI2cGyro.getHeading();
int integratedZ = modernRoboticsI2cGyro.getIntegratedZValue();
// Read dimensionalized data from the gyro. This gyro can report angular velocities
// about all three axes. Additionally, it internally integrates the Z axis to
// be able to report an absolute angular Z orientation.
AngularVelocity rates = gyro.getAngularVelocity(AngleUnit.DEGREES);
float zAngle = gyro.getAngularOrientation(AxesReference.INTRINSIC, AxesOrder.ZYX, AngleUnit.DEGREES).firstAngle;
// Read administrative information from the gyro
int zAxisOffset = modernRoboticsI2cGyro.getZAxisOffset();
int zAxisScalingCoefficient = modernRoboticsI2cGyro.getZAxisScalingCoefficient();
telemetry.addLine()
.addData("dx", formatRate(rates.xRotationRate))
.addData("dy", formatRate(rates.yRotationRate))
.addData("dz", "%s deg/s", formatRate(rates.zRotationRate));
telemetry.addData("angle", "%s deg", formatFloat(zAngle));
telemetry.addData("heading", "%3d deg", heading);
telemetry.addData("integrated Z", "%3d", integratedZ);
telemetry.addLine()
.addData("rawX", formatRaw(rawX))
.addData("rawY", formatRaw(rawY))
.addData("rawZ", formatRaw(rawZ));
telemetry.addLine().addData("z offset", zAxisOffset).addData("z coeff", zAxisScalingCoefficient);
telemetry.update();
}
}
String formatRaw(int rawValue) {
return String.format("%d", rawValue);
}
String formatRate(float rate) {
return String.format("%.3f", rate);
}
String formatFloat(float rate) {
return String.format("%.3f", rate);
}
}