power-play/FtcRobotController/src/main/java/org/firstinspires/ftc/robotcontroller/external/samples/SensorMRColor.java
2022-07-23 13:50:42 +09:00

140 lines
5.5 KiB
Java

/* Copyright (c) 2017 FIRST. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted (subject to the limitations in the disclaimer below) provided that
* the following conditions are met:
*
* Redistributions of source code must retain the above copyright notice, this list
* of conditions and the following disclaimer.
*
* Redistributions in binary form must reproduce the above copyright notice, this
* list of conditions and the following disclaimer in the documentation and/or
* other materials provided with the distribution.
*
* Neither the name of FIRST nor the names of its contributors may be used to endorse or
* promote products derived from this software without specific prior written permission.
*
* NO EXPRESS OR IMPLIED LICENSES TO ANY PARTY'S PATENT RIGHTS ARE GRANTED BY THIS
* LICENSE. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
package org.firstinspires.ftc.robotcontroller.external.samples;
import android.app.Activity;
import android.graphics.Color;
import android.view.View;
import com.qualcomm.robotcore.eventloop.opmode.Disabled;
import com.qualcomm.robotcore.eventloop.opmode.LinearOpMode;
import com.qualcomm.robotcore.eventloop.opmode.TeleOp;
import com.qualcomm.robotcore.hardware.ColorSensor;
/*
*
* This is an example LinearOpMode that shows how to use
* a Modern Robotics Color Sensor.
*
* The op mode assumes that the color sensor
* is configured with a name of "sensor_color".
*
* You can use the X button on gamepad1 to toggle the LED on and off.
*
* Use Android Studio to Copy this Class, and Paste it into your team's code folder with a new name.
* Remove or comment out the @Disabled line to add this OpMode to the Driver Station OpMode list
*/
@TeleOp(name = "Sensor: MR Color", group = "Sensor")
@Disabled
public class SensorMRColor extends LinearOpMode {
ColorSensor colorSensor; // Hardware Device Object
@Override
public void runOpMode() {
// hsvValues is an array that will hold the hue, saturation, and value information.
float hsvValues[] = {0F,0F,0F};
// values is a reference to the hsvValues array.
final float values[] = hsvValues;
// get a reference to the RelativeLayout so we can change the background
// color of the Robot Controller app to match the hue detected by the RGB sensor.
int relativeLayoutId = hardwareMap.appContext.getResources().getIdentifier("RelativeLayout", "id", hardwareMap.appContext.getPackageName());
final View relativeLayout = ((Activity) hardwareMap.appContext).findViewById(relativeLayoutId);
// bPrevState and bCurrState represent the previous and current state of the button.
boolean bPrevState = false;
boolean bCurrState = false;
// bLedOn represents the state of the LED.
boolean bLedOn = true;
// get a reference to our ColorSensor object.
colorSensor = hardwareMap.get(ColorSensor.class, "sensor_color");
// Set the LED in the beginning
colorSensor.enableLed(bLedOn);
// wait for the start button to be pressed.
waitForStart();
// while the op mode is active, loop and read the RGB data.
// Note we use opModeIsActive() as our loop condition because it is an interruptible method.
while (opModeIsActive()) {
// check the status of the x button on either gamepad.
bCurrState = gamepad1.x;
// check for button state transitions.
if (bCurrState && (bCurrState != bPrevState)) {
// button is transitioning to a pressed state. So Toggle LED
bLedOn = !bLedOn;
colorSensor.enableLed(bLedOn);
}
// update previous state variable.
bPrevState = bCurrState;
// convert the RGB values to HSV values.
Color.RGBToHSV(colorSensor.red() * 8, colorSensor.green() * 8, colorSensor.blue() * 8, hsvValues);
// send the info back to driver station using telemetry function.
telemetry.addData("LED", bLedOn ? "On" : "Off");
telemetry.addData("Clear", colorSensor.alpha());
telemetry.addData("Red ", colorSensor.red());
telemetry.addData("Green", colorSensor.green());
telemetry.addData("Blue ", colorSensor.blue());
telemetry.addData("Hue", hsvValues[0]);
// change the background color to match the color detected by the RGB sensor.
// pass a reference to the hue, saturation, and value array as an argument
// to the HSVToColor method.
relativeLayout.post(new Runnable() {
public void run() {
relativeLayout.setBackgroundColor(Color.HSVToColor(0xff, values));
}
});
telemetry.update();
}
// Set the panel back to the default color
relativeLayout.post(new Runnable() {
public void run() {
relativeLayout.setBackgroundColor(Color.WHITE);
}
});
}
}