mlua/src/util.rs
2019-11-04 22:23:15 +00:00

760 lines
28 KiB
Rust

use std::any::Any;
use std::borrow::Cow;
use std::fmt::Write;
use std::os::raw::{c_char, c_int, c_void};
use std::panic::{catch_unwind, resume_unwind, AssertUnwindSafe};
use std::sync::Arc;
use std::{mem, ptr, slice};
use crate::error::{Error, Result};
use crate::ffi;
// Checks that Lua has enough free stack space for future stack operations. On failure, this will
// panic with an internal error message.
pub unsafe fn assert_stack(state: *mut ffi::lua_State, amount: c_int) {
// TODO: This should only be triggered when there is a logic error in `mlua`. In the future,
// when there is a way to be confident about stack safety and test it, this could be enabled
// only when `cfg!(debug_assertions)` is true.
mlua_assert!(
ffi::lua_checkstack(state, amount) != 0,
"out of stack space"
);
}
// Checks that Lua has enough free stack space and returns `Error::StackError` on failure.
pub unsafe fn check_stack(state: *mut ffi::lua_State, amount: c_int) -> Result<()> {
if ffi::lua_checkstack(state, amount) == 0 {
Err(Error::StackError)
} else {
Ok(())
}
}
pub struct StackGuard {
state: *mut ffi::lua_State,
top: c_int,
}
impl StackGuard {
// Creates a StackGuard instance with wa record of the stack size, and on Drop will check the
// stack size and drop any extra elements. If the stack size at the end is *smaller* than at
// the beginning, this is considered a fatal logic error and will result in a panic.
pub unsafe fn new(state: *mut ffi::lua_State) -> StackGuard {
StackGuard {
state,
top: ffi::lua_gettop(state),
}
}
}
impl Drop for StackGuard {
fn drop(&mut self) {
unsafe {
let top = ffi::lua_gettop(self.state);
if top > self.top {
ffi::lua_settop(self.state, self.top);
} else if top < self.top {
mlua_panic!("{} too many stack values popped", self.top - top);
}
}
}
}
// Call a function that calls into the Lua API and may trigger a Lua error (longjmp) in a safe way.
// Wraps the inner function in a call to `lua_pcall`, so the inner function only has access to a
// limited lua stack. `nargs` is the same as the the parameter to `lua_pcall`, and `nresults` is
// always LUA_MULTRET. Internally uses 2 extra stack spaces, and does not call checkstack.
// Provided function must *never* panic.
pub unsafe fn protect_lua(
state: *mut ffi::lua_State,
nargs: c_int,
f: unsafe extern "C" fn(*mut ffi::lua_State) -> c_int,
) -> Result<()> {
let stack_start = ffi::lua_gettop(state) - nargs;
ffi::lua_pushcfunction(state, error_traceback);
ffi::lua_pushcfunction(state, f);
if nargs > 0 {
ffi::lua_rotate(state, stack_start + 1, 2);
}
let ret = ffi::lua_pcall(state, nargs, ffi::LUA_MULTRET, stack_start + 1);
ffi::lua_remove(state, stack_start + 1);
if ret == ffi::LUA_OK {
Ok(())
} else {
Err(pop_error(state, ret))
}
}
// Call a function that calls into the Lua API and may trigger a Lua error (longjmp) in a safe way.
// Wraps the inner function in a call to `lua_pcall`, so the inner function only has access to a
// limited lua stack. `nargs` and `nresults` are similar to the parameters of `lua_pcall`, but the
// given function return type is not the return value count, instead the inner function return
// values are assumed to match the `nresults` param. Internally uses 3 extra stack spaces, and does
// not call checkstack. Provided function must *not* panic, and since it will generally be
// lonjmping, should not contain any values that implement Drop.
pub unsafe fn protect_lua_closure<F, R>(
state: *mut ffi::lua_State,
nargs: c_int,
nresults: c_int,
f: F,
) -> Result<R>
where
F: Fn(*mut ffi::lua_State) -> R,
R: Copy,
{
union URes<R: Copy> {
uninit: (),
init: R,
}
struct Params<F, R: Copy> {
function: F,
result: URes<R>,
nresults: c_int,
}
unsafe extern "C" fn do_call<F, R>(state: *mut ffi::lua_State) -> c_int
where
R: Copy,
F: Fn(*mut ffi::lua_State) -> R,
{
let params = ffi::lua_touserdata(state, -1) as *mut Params<F, R>;
ffi::lua_pop(state, 1);
(*params).result.init = ((*params).function)(state);
if (*params).nresults == ffi::LUA_MULTRET {
ffi::lua_gettop(state)
} else {
(*params).nresults
}
}
let stack_start = ffi::lua_gettop(state) - nargs;
ffi::lua_pushcfunction(state, error_traceback);
ffi::lua_pushcfunction(state, do_call::<F, R>);
if nargs > 0 {
ffi::lua_rotate(state, stack_start + 1, 2);
}
let mut params = Params {
function: f,
result: URes { uninit: () },
nresults,
};
ffi::lua_pushlightuserdata(state, &mut params as *mut Params<F, R> as *mut c_void);
let ret = ffi::lua_pcall(state, nargs + 1, nresults, stack_start + 1);
ffi::lua_remove(state, stack_start + 1);
if ret == ffi::LUA_OK {
// LUA_OK is only returned when the do_call function has completed successfully, so
// params.result is definitely initialized.
Ok(params.result.init)
} else {
Err(pop_error(state, ret))
}
}
// Pops an error off of the stack and returns it. The specific behavior depends on the type of the
// error at the top of the stack:
// 1) If the error is actually a WrappedPanic, this will continue the panic.
// 2) If the error on the top of the stack is actually a WrappedError, just returns it.
// 3) Otherwise, interprets the error as the appropriate lua error.
// Uses 2 stack spaces, does not call lua_checkstack.
pub unsafe fn pop_error(state: *mut ffi::lua_State, err_code: c_int) -> Error {
mlua_debug_assert!(
err_code != ffi::LUA_OK && err_code != ffi::LUA_YIELD,
"pop_error called with non-error return code"
);
if let Some(err) = get_wrapped_error(state, -1).as_ref() {
ffi::lua_pop(state, 1);
err.clone()
} else if is_wrapped_panic(state, -1) {
let panic = get_userdata::<WrappedPanic>(state, -1);
if let Some(p) = (*panic).0.take() {
resume_unwind(p);
} else {
mlua_panic!("error during panic handling, panic was resumed twice")
}
} else {
let err_string = to_string(state, -1).into_owned();
ffi::lua_pop(state, 1);
match err_code {
ffi::LUA_ERRRUN => Error::RuntimeError(err_string),
ffi::LUA_ERRSYNTAX => {
Error::SyntaxError {
// This seems terrible, but as far as I can tell, this is exactly what the
// stock Lua REPL does.
incomplete_input: err_string.ends_with("<eof>")
|| err_string.ends_with("'<eof>'"),
message: err_string,
}
}
ffi::LUA_ERRERR => {
// This error is raised when the error handler raises an error too many times
// recursively, and continuing to trigger the error handler would cause a stack
// overflow. It is not very useful to differentiate between this and "ordinary"
// runtime errors, so we handle them the same way.
Error::RuntimeError(err_string)
}
ffi::LUA_ERRMEM => Error::MemoryError(err_string),
#[cfg(feature = "lua53")]
ffi::LUA_ERRGCMM => Error::GarbageCollectorError(err_string),
_ => mlua_panic!("unrecognized lua error code"),
}
}
}
// Internally uses 4 stack spaces, does not call checkstack
pub unsafe fn push_string<S: ?Sized + AsRef<[u8]>>(
state: *mut ffi::lua_State,
s: &S,
) -> Result<()> {
protect_lua_closure(state, 0, 1, |state| {
let s = s.as_ref();
ffi::lua_pushlstring(state, s.as_ptr() as *const c_char, s.len());
})
}
// Internally uses 4 stack spaces, does not call checkstack
pub unsafe fn push_userdata<T>(state: *mut ffi::lua_State, t: T) -> Result<()> {
let ud = protect_lua_closure(state, 0, 1, move |state| {
ffi::lua_newuserdata(state, mem::size_of::<T>()) as *mut T
})?;
ptr::write(ud, t);
Ok(())
}
pub unsafe fn get_userdata<T>(state: *mut ffi::lua_State, index: c_int) -> *mut T {
let ud = ffi::lua_touserdata(state, index) as *mut T;
mlua_debug_assert!(!ud.is_null(), "userdata pointer is null");
ud
}
// Pops the userdata off of the top of the stack and returns it to rust, invalidating the lua
// userdata and gives it the special "destructed" userdata metatable. Userdata must not have been
// previously invalidated, and this method does not check for this. Uses 1 extra stack space and
// does not call checkstack
pub unsafe fn take_userdata<T>(state: *mut ffi::lua_State) -> T {
// We set the metatable of userdata on __gc to a special table with no __gc method and with
// metamethods that trigger an error on access. We do this so that it will not be double
// dropped, and also so that it cannot be used or identified as any particular userdata type
// after the first call to __gc.
get_destructed_userdata_metatable(state);
ffi::lua_setmetatable(state, -2);
let ud = ffi::lua_touserdata(state, -1) as *mut T;
mlua_debug_assert!(!ud.is_null(), "userdata pointer is null");
ffi::lua_pop(state, 1);
ptr::read(ud)
}
// Populates the given table with the appropriate members to be a userdata metatable for the given
// type. This function takes the given table at the `metatable` index, and adds an appropriate __gc
// member to it for the given type and a __metatable entry to protect the table from script access.
// The function also, if given a `members` table index, will set up an __index metamethod to return
// the appropriate member on __index. Additionally, if there is already an __index entry on the
// given metatable, instead of simply overwriting the __index, instead the created __index method
// will capture the previous one, and use it as a fallback only if the given key is not found in the
// provided members table. Internally uses 6 stack spaces and does not call checkstack.
pub unsafe fn init_userdata_metatable<T>(
state: *mut ffi::lua_State,
metatable: c_int,
members: Option<c_int>,
) -> Result<()> {
// Used if both an __index metamethod is set and regular methods, checks methods table
// first, then __index metamethod.
unsafe extern "C" fn meta_index_impl(state: *mut ffi::lua_State) -> c_int {
ffi::luaL_checkstack(state, 2, ptr::null());
ffi::lua_pushvalue(state, -1);
ffi::lua_gettable(state, ffi::lua_upvalueindex(2));
if ffi::lua_isnil(state, -1) == 0 {
ffi::lua_insert(state, -3);
ffi::lua_pop(state, 2);
1
} else {
ffi::lua_pop(state, 1);
ffi::lua_pushvalue(state, ffi::lua_upvalueindex(1));
ffi::lua_insert(state, -3);
ffi::lua_call(state, 2, 1);
1
}
}
let members = members.map(|i| ffi::lua_absindex(state, i));
ffi::lua_pushvalue(state, metatable);
if let Some(members) = members {
push_string(state, "__index")?;
ffi::lua_pushvalue(state, -1);
let index_type = ffi::lua_rawget(state, -3);
if index_type == ffi::LUA_TNIL {
ffi::lua_pop(state, 1);
ffi::lua_pushvalue(state, members);
} else if index_type == ffi::LUA_TFUNCTION {
ffi::lua_pushvalue(state, members);
protect_lua_closure(state, 2, 1, |state| {
ffi::lua_pushcclosure(state, meta_index_impl, 2);
})?;
} else {
mlua_panic!("improper __index type {}", index_type);
}
protect_lua_closure(state, 3, 1, |state| {
ffi::lua_rawset(state, -3);
})?;
}
push_string(state, "__gc")?;
ffi::lua_pushcfunction(state, userdata_destructor::<T>);
protect_lua_closure(state, 3, 1, |state| {
ffi::lua_rawset(state, -3);
})?;
push_string(state, "__metatable")?;
ffi::lua_pushboolean(state, 0);
protect_lua_closure(state, 3, 1, |state| {
ffi::lua_rawset(state, -3);
})?;
ffi::lua_pop(state, 1);
Ok(())
}
pub unsafe extern "C" fn userdata_destructor<T>(state: *mut ffi::lua_State) -> c_int {
callback_error(state, |_| {
check_stack(state, 1)?;
take_userdata::<T>(state);
Ok(0)
})
}
// In the context of a lua callback, this will call the given function and if the given function
// returns an error, *or if the given function panics*, this will result in a call to lua_error (a
// longjmp). The error or panic is wrapped in such a way that when calling pop_error back on
// the rust side, it will resume the panic.
//
// This function assumes the structure of the stack at the beginning of a callback, that the only
// elements on the stack are the arguments to the callback.
//
// This function uses some of the bottom of the stack for error handling, the given callback will be
// given the number of arguments available as an argument, and should return the number of returns
// as normal, but cannot assume that the arguments available start at 0.
pub unsafe fn callback_error<R, F>(state: *mut ffi::lua_State, f: F) -> R
where
F: FnOnce(c_int) -> Result<R>,
{
let nargs = ffi::lua_gettop(state);
// We need one extra stack space to store preallocated memory, and at least 3 stack spaces
// overall for handling error metatables
let extra_stack = if nargs < 3 { 3 - nargs } else { 1 };
ffi::luaL_checkstack(
state,
extra_stack,
cstr!("not enough stack space for callback error handling"),
);
// We cannot shadow rust errors with Lua ones, we pre-allocate enough memory to store a wrapped
// error or panic *before* we proceed.
let ud = ffi::lua_newuserdata(
state,
mem::size_of::<WrappedError>().max(mem::size_of::<WrappedPanic>()),
);
ffi::lua_rotate(state, 1, 1);
match catch_unwind(AssertUnwindSafe(|| f(nargs))) {
Ok(Ok(r)) => {
ffi::lua_remove(state, 1);
r
}
Ok(Err(err)) => {
ffi::lua_settop(state, 1);
ptr::write(ud as *mut WrappedError, WrappedError(err));
get_error_metatable(state);
ffi::lua_setmetatable(state, -2);
ffi::lua_error(state)
}
Err(p) => {
ffi::lua_settop(state, 1);
ptr::write(ud as *mut WrappedPanic, WrappedPanic(Some(p)));
get_panic_metatable(state);
ffi::lua_setmetatable(state, -2);
ffi::lua_error(state)
}
}
}
// Takes an error at the top of the stack, and if it is a WrappedError, converts it to an
// Error::CallbackError with a traceback, if it is some lua type, prints the error along with a
// traceback, and if it is a WrappedPanic, does not modify it. This function does its best to avoid
// triggering another error and shadowing previous rust errors, but it may trigger Lua errors that
// shadow rust errors under certain memory conditions. This function ensures that such behavior
// will *never* occur with a rust panic, however.
pub unsafe extern "C" fn error_traceback(state: *mut ffi::lua_State) -> c_int {
// I believe luaL_traceback requires this much free stack to not error.
const LUA_TRACEBACK_STACK: c_int = 11;
if ffi::lua_checkstack(state, 2) == 0 {
// If we don't have enough stack space to even check the error type, do nothing so we don't
// risk shadowing a rust panic.
} else if let Some(error) = get_wrapped_error(state, -1).as_ref() {
// lua_newuserdata and luaL_traceback may error, but nothing that implements Drop should be
// on the rust stack at this time.
let ud = ffi::lua_newuserdata(state, mem::size_of::<WrappedError>()) as *mut WrappedError;
let traceback = if ffi::lua_checkstack(state, LUA_TRACEBACK_STACK) != 0 {
ffi::luaL_traceback(state, state, ptr::null(), 0);
let traceback = to_string(state, -1).into_owned();
ffi::lua_pop(state, 1);
traceback
} else {
"<not enough stack space for traceback>".to_owned()
};
let error = error.clone();
ffi::lua_remove(state, -2);
ptr::write(
ud,
WrappedError(Error::CallbackError {
traceback,
cause: Arc::new(error),
}),
);
get_error_metatable(state);
ffi::lua_setmetatable(state, -2);
} else if !is_wrapped_panic(state, -1) {
if ffi::lua_checkstack(state, LUA_TRACEBACK_STACK) != 0 {
let s = ffi::luaL_tolstring(state, -1, ptr::null_mut());
ffi::luaL_traceback(state, state, s, 0);
ffi::lua_remove(state, -2);
}
}
1
}
// Does not call lua_checkstack, uses 2 stack spaces.
#[cfg(any(feature = "lua51", feature = "luajit"))]
pub unsafe fn set_main_state(state: *mut ffi::lua_State) {
ffi::lua_pushlightuserdata(state, &MAIN_THREAD_REGISTRY_KEY as *const u8 as *mut c_void);
ffi::lua_pushthread(state);
ffi::lua_rawset(state, ffi::LUA_REGISTRYINDEX);
}
// Does not call lua_checkstack, uses 1 stack space.
pub unsafe fn get_main_state(state: *mut ffi::lua_State) -> *mut ffi::lua_State {
#[cfg(feature = "lua53")]
ffi::lua_rawgeti(state, ffi::LUA_REGISTRYINDEX, ffi::LUA_RIDX_MAINTHREAD);
#[cfg(any(feature = "lua51", feature = "luajit"))]
{
ffi::lua_pushlightuserdata(state, &MAIN_THREAD_REGISTRY_KEY as *const u8 as *mut c_void);
ffi::lua_rawget(state, ffi::LUA_REGISTRYINDEX);
}
let main_state = ffi::lua_tothread(state, -1);
ffi::lua_pop(state, 1);
main_state
}
// Pushes a WrappedError to the top of the stack. Uses two stack spaces and does not call
// lua_checkstack.
pub unsafe fn push_wrapped_error(state: *mut ffi::lua_State, err: Error) -> Result<()> {
let ud = protect_lua_closure(state, 0, 1, move |state| {
ffi::lua_newuserdata(state, mem::size_of::<WrappedError>()) as *mut WrappedError
})?;
ptr::write(ud, WrappedError(err));
get_error_metatable(state);
ffi::lua_setmetatable(state, -2);
Ok(())
}
// Checks if the value at the given index is a WrappedError, and if it is returns a pointer to it,
// otherwise returns null. Uses 2 stack spaces and does not call lua_checkstack.
pub unsafe fn get_wrapped_error(state: *mut ffi::lua_State, index: c_int) -> *const Error {
let userdata = ffi::lua_touserdata(state, index);
if userdata.is_null() {
return ptr::null();
}
if ffi::lua_getmetatable(state, index) == 0 {
return ptr::null();
}
get_error_metatable(state);
let res = ffi::lua_rawequal(state, -1, -2) != 0;
ffi::lua_pop(state, 2);
if res {
&(*get_userdata::<WrappedError>(state, -1)).0
} else {
ptr::null()
}
}
// Initialize the error, panic, and destructed userdata metatables.
pub unsafe fn init_error_registry(state: *mut ffi::lua_State) {
assert_stack(state, 8);
// Create error metatable
unsafe extern "C" fn error_tostring(state: *mut ffi::lua_State) -> c_int {
let err_buf = callback_error(state, |_| {
check_stack(state, 3)?;
if let Some(error) = get_wrapped_error(state, -1).as_ref() {
ffi::lua_pushlightuserdata(
state,
&ERROR_PRINT_BUFFER_KEY as *const u8 as *mut c_void,
);
ffi::lua_rawget(state, ffi::LUA_REGISTRYINDEX);
let err_buf = ffi::lua_touserdata(state, -1) as *mut String;
ffi::lua_pop(state, 2);
(*err_buf).clear();
// Depending on how the API is used and what error types scripts are given, it may
// be possible to make this consume arbitrary amounts of memory (for example, some
// kind of recursive error structure?)
let _ = write!(&mut (*err_buf), "{}", error);
Ok(err_buf)
} else if is_wrapped_panic(state, -1) {
let panic = get_userdata::<WrappedPanic>(state, -1);
if let Some(ref p) = (*panic).0 {
ffi::lua_pushlightuserdata(
state,
&ERROR_PRINT_BUFFER_KEY as *const u8 as *mut c_void,
);
ffi::lua_rawget(state, ffi::LUA_REGISTRYINDEX);
let err_buf = ffi::lua_touserdata(state, -1) as *mut String;
ffi::lua_pop(state, 2);
let error = if let Some(x) = p.downcast_ref::<&str>() {
x.to_string()
} else if let Some(x) = p.downcast_ref::<String>() {
x.to_string()
} else {
"panic".to_string()
};
(*err_buf).clear();
let _ = write!(&mut (*err_buf), "{}", error);
Ok(err_buf)
} else {
mlua_panic!("error during panic handling, panic was resumed")
}
} else {
// I'm not sure whether this is possible to trigger without bugs in mlua?
Err(Error::UserDataTypeMismatch)
}
});
ffi::lua_pushlstring(
state,
(*err_buf).as_ptr() as *const c_char,
(*err_buf).len(),
);
(*err_buf).clear();
1
}
ffi::lua_pushlightuserdata(
state,
&ERROR_METATABLE_REGISTRY_KEY as *const u8 as *mut c_void,
);
ffi::lua_newtable(state);
ffi::lua_pushstring(state, cstr!("__gc"));
ffi::lua_pushcfunction(state, userdata_destructor::<WrappedError>);
ffi::lua_rawset(state, -3);
ffi::lua_pushstring(state, cstr!("__tostring"));
ffi::lua_pushcfunction(state, error_tostring);
ffi::lua_rawset(state, -3);
ffi::lua_pushstring(state, cstr!("__metatable"));
ffi::lua_pushboolean(state, 0);
ffi::lua_rawset(state, -3);
ffi::lua_rawset(state, ffi::LUA_REGISTRYINDEX);
// Create panic metatable
ffi::lua_pushlightuserdata(
state,
&PANIC_METATABLE_REGISTRY_KEY as *const u8 as *mut c_void,
);
ffi::lua_newtable(state);
ffi::lua_pushstring(state, cstr!("__gc"));
ffi::lua_pushcfunction(state, userdata_destructor::<WrappedPanic>);
ffi::lua_rawset(state, -3);
ffi::lua_pushstring(state, cstr!("__tostring"));
ffi::lua_pushcfunction(state, error_tostring);
ffi::lua_rawset(state, -3);
ffi::lua_pushstring(state, cstr!("__metatable"));
ffi::lua_pushboolean(state, 0);
ffi::lua_rawset(state, -3);
ffi::lua_rawset(state, ffi::LUA_REGISTRYINDEX);
// Create destructed userdata metatable
unsafe extern "C" fn destructed_error(state: *mut ffi::lua_State) -> c_int {
ffi::luaL_checkstack(state, 2, ptr::null());
let ud = ffi::lua_newuserdata(state, mem::size_of::<WrappedError>()) as *mut WrappedError;
ptr::write(ud, WrappedError(Error::CallbackDestructed));
get_error_metatable(state);
ffi::lua_setmetatable(state, -2);
ffi::lua_error(state)
}
ffi::lua_pushlightuserdata(
state,
&DESTRUCTED_USERDATA_METATABLE as *const u8 as *mut c_void,
);
ffi::lua_newtable(state);
for &method in &[
cstr!("__add"),
cstr!("__sub"),
cstr!("__mul"),
cstr!("__div"),
cstr!("__mod"),
cstr!("__pow"),
cstr!("__unm"),
cstr!("__idiv"),
cstr!("__band"),
cstr!("__bor"),
cstr!("__bxor"),
cstr!("__bnot"),
cstr!("__shl"),
cstr!("__shr"),
cstr!("__concat"),
cstr!("__len"),
cstr!("__eq"),
cstr!("__lt"),
cstr!("__le"),
cstr!("__index"),
cstr!("__newindex"),
cstr!("__call"),
cstr!("__tostring"),
cstr!("__pairs"),
cstr!("__ipairs"),
] {
ffi::lua_pushstring(state, method);
ffi::lua_pushcfunction(state, destructed_error);
ffi::lua_rawset(state, -3);
}
ffi::lua_rawset(state, ffi::LUA_REGISTRYINDEX);
// Create error print buffer
ffi::lua_pushlightuserdata(state, &ERROR_PRINT_BUFFER_KEY as *const u8 as *mut c_void);
let ud = ffi::lua_newuserdata(state, mem::size_of::<String>()) as *mut String;
ptr::write(ud, String::new());
ffi::lua_newtable(state);
ffi::lua_pushstring(state, cstr!("__gc"));
ffi::lua_pushcfunction(state, userdata_destructor::<String>);
ffi::lua_rawset(state, -3);
ffi::lua_setmetatable(state, -2);
ffi::lua_rawset(state, ffi::LUA_REGISTRYINDEX);
}
struct WrappedError(pub Error);
struct WrappedPanic(pub Option<Box<dyn Any + Send + 'static>>);
// Converts the given lua value to a string in a reasonable format without causing a Lua error or
// panicking.
unsafe fn to_string<'a>(state: *mut ffi::lua_State, index: c_int) -> Cow<'a, str> {
match ffi::lua_type(state, index) {
ffi::LUA_TNONE => "<none>".into(),
ffi::LUA_TNIL => "<nil>".into(),
ffi::LUA_TBOOLEAN => (ffi::lua_toboolean(state, index) != 1).to_string().into(),
ffi::LUA_TLIGHTUSERDATA => {
format!("<lightuserdata {:?}>", ffi::lua_topointer(state, index)).into()
}
ffi::LUA_TNUMBER => {
let mut isint = 0;
let i = ffi::lua_tointegerx(state, -1, &mut isint);
if isint == 0 {
ffi::lua_tonumber(state, index).to_string().into()
} else {
i.to_string().into()
}
}
ffi::LUA_TSTRING => {
let mut size = 0;
let data = ffi::lua_tolstring(state, index, &mut size);
String::from_utf8_lossy(slice::from_raw_parts(data as *const u8, size))
}
ffi::LUA_TTABLE => format!("<table {:?}>", ffi::lua_topointer(state, index)).into(),
ffi::LUA_TFUNCTION => format!("<function {:?}>", ffi::lua_topointer(state, index)).into(),
ffi::LUA_TUSERDATA => format!("<userdata {:?}>", ffi::lua_topointer(state, index)).into(),
ffi::LUA_TTHREAD => format!("<thread {:?}>", ffi::lua_topointer(state, index)).into(),
_ => "<unknown>".into(),
}
}
// Checks if the value at the given index is a WrappedPanic. Uses 2 stack spaces and does not call
// lua_checkstack.
unsafe fn is_wrapped_panic(state: *mut ffi::lua_State, index: c_int) -> bool {
let userdata = ffi::lua_touserdata(state, index);
if userdata.is_null() {
return false;
}
if ffi::lua_getmetatable(state, index) == 0 {
return false;
}
get_panic_metatable(state);
let res = ffi::lua_rawequal(state, -1, -2) != 0;
ffi::lua_pop(state, 2);
res
}
unsafe fn get_error_metatable(state: *mut ffi::lua_State) {
ffi::lua_pushlightuserdata(
state,
&ERROR_METATABLE_REGISTRY_KEY as *const u8 as *mut c_void,
);
ffi::lua_rawget(state, ffi::LUA_REGISTRYINDEX);
}
unsafe fn get_panic_metatable(state: *mut ffi::lua_State) {
ffi::lua_pushlightuserdata(
state,
&PANIC_METATABLE_REGISTRY_KEY as *const u8 as *mut c_void,
);
ffi::lua_rawget(state, ffi::LUA_REGISTRYINDEX);
}
unsafe fn get_destructed_userdata_metatable(state: *mut ffi::lua_State) {
ffi::lua_pushlightuserdata(
state,
&DESTRUCTED_USERDATA_METATABLE as *const u8 as *mut c_void,
);
ffi::lua_rawget(state, ffi::LUA_REGISTRYINDEX);
}
#[cfg(any(feature = "lua51", feature = "luajit"))]
static MAIN_THREAD_REGISTRY_KEY: u8 = 0;
static ERROR_METATABLE_REGISTRY_KEY: u8 = 0;
static PANIC_METATABLE_REGISTRY_KEY: u8 = 0;
static DESTRUCTED_USERDATA_METATABLE: u8 = 0;
static ERROR_PRINT_BUFFER_KEY: u8 = 0;