mlua/examples/guided_tour.rs
2021-06-19 14:41:48 +01:00

213 lines
7.2 KiB
Rust

use std::f32;
use std::iter::FromIterator;
use mlua::{chunk, Function, Lua, MetaMethod, Result, UserData, UserDataMethods, Variadic};
fn main() -> Result<()> {
// You can create a new Lua state with `Lua::new()`. This loads the default Lua std library
// *without* the debug library.
let lua = Lua::new();
// You can get and set global variables. Notice that the globals table here is a permanent
// reference to _G, and it is mutated behind the scenes as Lua code is loaded. This API is
// based heavily around sharing and internal mutation (just like Lua itself).
let globals = lua.globals();
globals.set("string_var", "hello")?;
globals.set("int_var", 42)?;
assert_eq!(globals.get::<_, String>("string_var")?, "hello");
assert_eq!(globals.get::<_, i64>("int_var")?, 42);
// You can load and evaluate Lua code. The returned type of `Lua::load` is a builder
// that allows you to change settings before running Lua code. Here, we are using it to set
// the name of the laoded chunk to "example code", which will be used when Lua error
// messages are printed.
lua.load(
r#"
global = 'foo'..'bar'
"#,
)
.set_name("example code")?
.exec()?;
assert_eq!(globals.get::<_, String>("global")?, "foobar");
assert_eq!(lua.load("1 + 1").eval::<i32>()?, 2);
assert_eq!(lua.load("false == false").eval::<bool>()?, true);
assert_eq!(lua.load("return 1 + 2").eval::<i32>()?, 3);
// Use can use special `chunk!` macro to use Rust tokenizer and automatically capture variables
let a = 1;
let b = 2;
let name = "world";
lua.load(chunk! {
print($a + $b)
print("hello, " .. $name)
})
.exec()?;
// You can create and manage Lua tables
let array_table = lua.create_table()?;
array_table.set(1, "one")?;
array_table.set(2, "two")?;
array_table.set(3, "three")?;
assert_eq!(array_table.len()?, 3);
let map_table = lua.create_table()?;
map_table.set("one", 1)?;
map_table.set("two", 2)?;
map_table.set("three", 3)?;
let v: i64 = map_table.get("two")?;
assert_eq!(v, 2);
// You can pass values like `Table` back into Lua
globals.set("array_table", array_table)?;
globals.set("map_table", map_table)?;
lua.load(
r#"
for k, v in pairs(array_table) do
print(k, v)
end
for k, v in pairs(map_table) do
print(k, v)
end
"#,
)
.exec()?;
// You can load Lua functions
let print: Function = globals.get("print")?;
print.call::<_, ()>("hello from rust")?;
// This API generally handles variadics using tuples. This is one way to call a function with
// multiple parameters:
print.call::<_, ()>(("hello", "again", "from", "rust"))?;
// But, you can also pass variadic arguments with the `Variadic` type.
print.call::<_, ()>(Variadic::from_iter(
["hello", "yet", "again", "from", "rust"].iter().cloned(),
))?;
// You can bind rust functions to Lua as well. Callbacks receive the Lua state inself as their
// first parameter, and the arguments given to the function as the second parameter. The type
// of the arguments can be anything that is convertible from the parameters given by Lua, in
// this case, the function expects two string sequences.
let check_equal = lua.create_function(|_, (list1, list2): (Vec<String>, Vec<String>)| {
// This function just checks whether two string lists are equal, and in an inefficient way.
// Lua callbacks return `mlua::Result`, an Ok value is a normal return, and an Err return
// turns into a Lua 'error'. Again, any type that is convertible to Lua may be returned.
Ok(list1 == list2)
})?;
globals.set("check_equal", check_equal)?;
// You can also accept runtime variadic arguments to rust callbacks.
let join = lua.create_function(|_, strings: Variadic<String>| {
// (This is quadratic!, it's just an example!)
Ok(strings.iter().fold("".to_owned(), |a, b| a + b))
})?;
globals.set("join", join)?;
assert_eq!(
lua.load(r#"check_equal({"a", "b", "c"}, {"a", "b", "c"})"#)
.eval::<bool>()?,
true
);
assert_eq!(
lua.load(r#"check_equal({"a", "b", "c"}, {"d", "e", "f"})"#)
.eval::<bool>()?,
false
);
assert_eq!(lua.load(r#"join("a", "b", "c")"#).eval::<String>()?, "abc");
// Callbacks receive a Lua state as their first parameter so that they can use it to
// create new Lua values, if necessary.
let create_table = lua.create_function(|lua, ()| {
let t = lua.create_table()?;
t.set(1, 1)?;
t.set(2, 2)?;
Ok(t)
})?;
globals.set("create_table", create_table)?;
assert_eq!(lua.load(r#"create_table()[2]"#).eval::<i32>()?, 2);
// You can create userdata with methods and metamethods defined on them.
// Here's a worked example that shows many of the features of this API
// together
#[derive(Copy, Clone)]
struct Vec2(f32, f32);
impl UserData for Vec2 {
fn add_methods<'lua, M: UserDataMethods<'lua, Self>>(methods: &mut M) {
methods.add_method("magnitude", |_, vec, ()| {
let mag_squared = vec.0 * vec.0 + vec.1 * vec.1;
Ok(mag_squared.sqrt())
});
methods.add_meta_function(MetaMethod::Add, |_, (vec1, vec2): (Vec2, Vec2)| {
Ok(Vec2(vec1.0 + vec2.0, vec1.1 + vec2.1))
});
}
}
let vec2_constructor = lua.create_function(|_, (x, y): (f32, f32)| Ok(Vec2(x, y)))?;
globals.set("vec2", vec2_constructor)?;
assert!(
(lua.load("(vec2(1, 2) + vec2(2, 2)):magnitude()")
.eval::<f32>()?
- 5.0)
.abs()
< f32::EPSILON
);
// Normally, Rust types passed to `Lua` must be `'static`, because there is no way to be
// sure of their lifetime inside the Lua state. There is, however, a limited way to lift this
// requirement. You can call `Lua::scope` to create userdata and callbacks types that only live
// for as long as the call to scope, but do not have to be `'static` (and `Send`).
{
let mut rust_val = 0;
lua.scope(|scope| {
// We create a 'sketchy' Lua callback that holds a mutable reference to the variable
// `rust_val`. Outside of a `Lua::scope` call, this would not be allowed
// because it could be unsafe.
lua.globals().set(
"sketchy",
scope.create_function_mut(|_, ()| {
rust_val = 42;
Ok(())
})?,
)?;
lua.load("sketchy()").exec()
})?;
assert_eq!(rust_val, 42);
}
// We were able to run our 'sketchy' function inside the scope just fine. However, if we
// try to run our 'sketchy' function outside of the scope, the function we created will have
// been invalidated and we will generate an error. If our function wasn't invalidated, we
// might be able to improperly access the freed `rust_val` which would be unsafe.
assert!(lua.load("sketchy()").exec().is_err());
Ok(())
}