use std::any::{Any, TypeId}; use std::cell::{Ref, RefCell, RefMut, UnsafeCell}; use std::collections::HashMap; use std::ffi::CString; use std::fmt; use std::marker::PhantomData; use std::os::raw::{c_char, c_int, c_void}; use std::panic::{catch_unwind, resume_unwind, AssertUnwindSafe, Location}; use std::sync::{Arc, Mutex, RwLock}; use std::{mem, ptr, str}; use rustc_hash::FxHashMap; use crate::error::{Error, Result}; use crate::ffi; use crate::function::Function; #[cfg(not(feature = "luau"))] use crate::hook::{Debug, HookTriggers}; use crate::scope::Scope; use crate::stdlib::StdLib; use crate::string::String; use crate::table::Table; use crate::thread::Thread; use crate::types::{ Callback, CallbackUpvalue, DestructedUserdataMT, /*HookCallback,*/ Integer, LightUserData, LuaRef, MaybeSend, Number, RegistryKey, }; use crate::userdata::{ AnyUserData, MetaMethod, UserData, UserDataCell, UserDataFields, UserDataMethods, }; use crate::util::{ self, assert_stack, callback_error, check_stack, get_destructed_userdata_metatable, get_gc_metatable, get_gc_userdata, get_main_state, get_userdata, init_error_registry, init_gc_metatable, init_userdata_metatable, pop_error, push_gc_userdata, push_string, push_table, rawset_field, safe_pcall, safe_xpcall, StackGuard, WrappedFailure, }; use crate::value::{FromLua, FromLuaMulti, MultiValue, Nil, ToLua, ToLuaMulti, Value}; #[cfg(not(feature = "luau"))] use crate::types::HookCallback; #[cfg(not(feature = "lua54"))] use crate::util::push_userdata; #[cfg(feature = "lua54")] use { crate::{types::WarnCallback, userdata::USER_VALUE_MAXSLOT, util::push_userdata_uv}, std::ffi::CStr, }; #[cfg(not(feature = "send"))] use std::rc::Rc; #[cfg(feature = "async")] use { crate::types::{AsyncCallback, AsyncCallbackUpvalue, AsyncPollUpvalue}, futures_core::{ future::{Future, LocalBoxFuture}, task::{Context, Poll, Waker}, }, futures_task::noop_waker, futures_util::future::{self, TryFutureExt}, }; #[cfg(feature = "serialize")] use serde::Serialize; /// Top level Lua struct which holds the Lua state itself. pub struct Lua { pub(crate) state: *mut ffi::lua_State, main_state: Option<*mut ffi::lua_State>, extra: Arc>, ephemeral: bool, safe: bool, // Lua has lots of interior mutability, should not be RefUnwindSafe _no_ref_unwind_safe: PhantomData>, } // Data associated with the Lua. struct ExtraData { registered_userdata: FxHashMap, registered_userdata_mt: FxHashMap<*const c_void, Option>, registry_unref_list: Arc>>>, #[cfg(not(feature = "send"))] app_data: RefCell>>, #[cfg(feature = "send")] app_data: RefCell>>, libs: StdLib, mem_info: Option>, safe: bool, // Same as in the Lua struct ref_thread: *mut ffi::lua_State, ref_stack_size: c_int, ref_stack_top: c_int, ref_free: Vec, // Cache of `WrappedFailure` enums on the ref thread (as userdata) wrapped_failures_cache: Vec, // Cache of recycled `MultiValue` containers multivalue_cache: Vec>, // Cache of recycled `Thread`s (coroutines) #[cfg(feature = "async")] recycled_thread_cache: Vec, // Index of `Option` userdata on the ref thread #[cfg(feature = "async")] ref_waker_idx: c_int, #[cfg(not(feature = "luau"))] hook_callback: Option, #[cfg(feature = "lua54")] warn_callback: Option, } #[cfg_attr(any(feature = "lua51", feature = "luajit"), allow(dead_code))] struct MemoryInfo { used_memory: isize, memory_limit: isize, } /// Mode of the Lua garbage collector (GC). /// /// In Lua 5.4 GC can work in two modes: incremental and generational. /// Previous Lua versions support only incremental GC. /// /// More information can be found in the Lua [documentation]. /// /// [documentation]: https://www.lua.org/manual/5.4/manual.html#2.5 #[derive(Clone, Copy, Debug, PartialEq, Eq)] pub enum GCMode { Incremental, /// Requires `feature = "lua54"` #[cfg(any(feature = "lua54"))] Generational, } /// Controls Lua interpreter behavior such as Rust panics handling. #[derive(Clone, Debug)] #[non_exhaustive] pub struct LuaOptions { /// Catch Rust panics when using [`pcall`]/[`xpcall`]. /// /// If disabled, wraps these functions and automatically resumes panic if found. /// Also in Lua 5.1 adds ability to provide arguments to [`xpcall`] similar to Lua >= 5.2. /// /// If enabled, keeps [`pcall`]/[`xpcall`] unmodified. /// Panics are still automatically resumed if returned to the Rust side. /// /// Default: **true** /// /// [`pcall`]: https://www.lua.org/manual/5.4/manual.html#pdf-pcall /// [`xpcall`]: https://www.lua.org/manual/5.4/manual.html#pdf-xpcall pub catch_rust_panics: bool, /// Max size of thread (coroutine) object cache used to execute asynchronous functions. /// /// It works only on Lua 5.4 or LuaJIT (vendored) with [`lua_resetthread`] function, /// and allows to reuse old coroutines with reset state. /// /// Default: **0** (disabled) /// /// [`lua_resetthread`]: https://www.lua.org/manual/5.4/manual.html#lua_resetthread #[cfg(feature = "async")] #[cfg_attr(docsrs, doc(cfg(feature = "async")))] pub thread_cache_size: usize, } impl Default for LuaOptions { fn default() -> Self { LuaOptions::new() } } impl LuaOptions { /// Returns a new instance of `LuaOptions` with default parameters. pub const fn new() -> Self { LuaOptions { catch_rust_panics: true, #[cfg(feature = "async")] thread_cache_size: 0, } } /// Sets [`catch_rust_panics`] option. /// /// [`catch_rust_panics`]: #structfield.catch_rust_panics #[must_use] pub const fn catch_rust_panics(mut self, enabled: bool) -> Self { self.catch_rust_panics = enabled; self } /// Sets [`thread_cache_size`] option. /// /// [`thread_cache_size`]: #structfield.thread_cache_size #[cfg(feature = "async")] #[cfg_attr(docsrs, doc(cfg(feature = "async")))] #[must_use] pub const fn thread_cache_size(mut self, size: usize) -> Self { self.thread_cache_size = size; self } } #[cfg(feature = "async")] pub(crate) static ASYNC_POLL_PENDING: u8 = 0; pub(crate) static EXTRA_REGISTRY_KEY: u8 = 0; const WRAPPED_FAILURES_CACHE_SIZE: usize = 16; const MULTIVALUE_CACHE_SIZE: usize = 16; /// Requires `feature = "send"` #[cfg(feature = "send")] #[cfg_attr(docsrs, doc(cfg(feature = "send")))] unsafe impl Send for Lua {} impl Drop for Lua { fn drop(&mut self) { unsafe { if !self.ephemeral { let extra = &mut *self.extra.get(); let drain_iter = extra.wrapped_failures_cache.drain(..); #[cfg(feature = "async")] let drain_iter = drain_iter.chain(extra.recycled_thread_cache.drain(..)); for index in drain_iter { ffi::lua_pushnil(extra.ref_thread); ffi::lua_replace(extra.ref_thread, index); extra.ref_free.push(index); } #[cfg(feature = "async")] { // Destroy Waker slot ffi::lua_pushnil(extra.ref_thread); ffi::lua_replace(extra.ref_thread, extra.ref_waker_idx); extra.ref_free.push(extra.ref_waker_idx); } mlua_debug_assert!( ffi::lua_gettop(extra.ref_thread) == extra.ref_stack_top && extra.ref_stack_top as usize == extra.ref_free.len(), "reference leak detected" ); ffi::lua_close(mlua_expect!(self.main_state, "main_state is null")); } } } } impl Drop for ExtraData { fn drop(&mut self) { *mlua_expect!(self.registry_unref_list.lock(), "unref list poisoned") = None; if let Some(mem_info) = self.mem_info { drop(unsafe { Box::from_raw(mem_info.as_ptr()) }); } } } impl fmt::Debug for Lua { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "Lua({:p})", self.state) } } impl Lua { /// Creates a new Lua state and loads the **safe** subset of the standard libraries. /// /// # Safety /// The created Lua state would have _some_ safety guarantees and would not allow to load unsafe /// standard libraries or C modules. /// /// See [`StdLib`] documentation for a list of unsafe modules that cannot be loaded. /// /// [`StdLib`]: crate::StdLib #[allow(clippy::new_without_default)] pub fn new() -> Lua { mlua_expect!( Self::new_with(StdLib::ALL_SAFE, LuaOptions::default()), "can't create new safe Lua state" ) } /// Creates a new Lua state and loads all the standard libraries. /// /// # Safety /// The created Lua state would not have safety guarantees and would allow to load C modules. pub unsafe fn unsafe_new() -> Lua { Self::unsafe_new_with(StdLib::ALL, LuaOptions::default()) } /// Creates a new Lua state and loads the specified safe subset of the standard libraries. /// /// Use the [`StdLib`] flags to specify the libraries you want to load. /// /// # Safety /// The created Lua state would have _some_ safety guarantees and would not allow to load unsafe /// standard libraries or C modules. /// /// See [`StdLib`] documentation for a list of unsafe modules that cannot be loaded. /// /// [`StdLib`]: crate::StdLib pub fn new_with(libs: StdLib, options: LuaOptions) -> Result { if libs.contains(StdLib::DEBUG) { return Err(Error::SafetyError( "the unsafe `debug` module can't be loaded using safe `new_with`".to_string(), )); } #[cfg(feature = "luajit")] { if libs.contains(StdLib::FFI) { return Err(Error::SafetyError( "the unsafe `ffi` module can't be loaded using safe `new_with`".to_string(), )); } } let mut lua = unsafe { Self::inner_new(libs, options) }; #[cfg(not(feature = "luau"))] if libs.contains(StdLib::PACKAGE) { mlua_expect!(lua.disable_c_modules(), "Error during disabling C modules"); } lua.safe = true; unsafe { (*lua.extra.get()).safe = true }; Ok(lua) } /// Creates a new Lua state and loads the specified subset of the standard libraries. /// /// Use the [`StdLib`] flags to specify the libraries you want to load. /// /// # Safety /// The created Lua state will not have safety guarantees and allow to load C modules. /// /// [`StdLib`]: crate::StdLib pub unsafe fn unsafe_new_with(libs: StdLib, options: LuaOptions) -> Lua { #[cfg(not(feature = "luau"))] ffi::keep_lua_symbols(); Self::inner_new(libs, options) } unsafe fn inner_new(libs: StdLib, options: LuaOptions) -> Lua { #[cfg_attr( any(feature = "lua51", feature = "luajit", feature = "luau"), allow(dead_code) )] unsafe extern "C" fn allocator( extra_data: *mut c_void, ptr: *mut c_void, osize: usize, nsize: usize, ) -> *mut c_void { use std::alloc; let mem_info = &mut *(extra_data as *mut MemoryInfo); if nsize == 0 { // Free memory if !ptr.is_null() { let layout = alloc::Layout::from_size_align_unchecked(osize, ffi::SYS_MIN_ALIGN); alloc::dealloc(ptr as *mut u8, layout); mem_info.used_memory -= osize as isize; } return ptr::null_mut(); } // Are we fit to the memory limits? let mut mem_diff = nsize as isize; if !ptr.is_null() { mem_diff -= osize as isize; } let new_used_memory = mem_info.used_memory + mem_diff; if mem_info.memory_limit > 0 && new_used_memory > mem_info.memory_limit { return ptr::null_mut(); } let new_layout = alloc::Layout::from_size_align_unchecked(nsize, ffi::SYS_MIN_ALIGN); if ptr.is_null() { // Allocate new memory let new_ptr = alloc::alloc(new_layout) as *mut c_void; if !new_ptr.is_null() { mem_info.used_memory += mem_diff; } return new_ptr; } // Reallocate memory let old_layout = alloc::Layout::from_size_align_unchecked(osize, ffi::SYS_MIN_ALIGN); let new_ptr = alloc::realloc(ptr as *mut u8, old_layout, nsize) as *mut c_void; if !new_ptr.is_null() { mem_info.used_memory += mem_diff; } else if !ptr.is_null() && nsize < osize { // Should not happen alloc::handle_alloc_error(new_layout); } new_ptr } #[cfg(any(feature = "lua54", feature = "lua53", feature = "lua52"))] let mem_info = Box::into_raw(Box::new(MemoryInfo { used_memory: 0, memory_limit: 0, })); #[cfg(any(feature = "lua54", feature = "lua53", feature = "lua52"))] let state = ffi::lua_newstate(allocator, mem_info as *mut c_void); #[cfg(any(feature = "lua51", feature = "luajit", feature = "luau"))] let state = ffi::luaL_newstate(); // #[cfg(feature = "luau")] // { // ffi::luaL_sandbox(state); // } ffi::luaL_requiref(state, cstr!("_G"), ffi::luaopen_base, 1); ffi::lua_pop(state, 1); let mut lua = Lua::init_from_ptr(state); lua.ephemeral = false; let extra = &mut *lua.extra.get(); #[cfg(any(feature = "lua54", feature = "lua53", feature = "lua52"))] { extra.mem_info = ptr::NonNull::new(mem_info); } mlua_expect!( load_from_std_lib(state, libs), "Error during loading standard libraries" ); extra.libs |= libs; if !options.catch_rust_panics { mlua_expect!( (|| -> Result<()> { let _sg = StackGuard::new(lua.state); #[cfg(any(feature = "lua54", feature = "lua53", feature = "lua52"))] ffi::lua_rawgeti(lua.state, ffi::LUA_REGISTRYINDEX, ffi::LUA_RIDX_GLOBALS); #[cfg(any(feature = "lua51", feature = "luajit", feature = "luau"))] ffi::lua_pushvalue(lua.state, ffi::LUA_GLOBALSINDEX); ffi::lua_pushcfunction(lua.state, safe_pcall); rawset_field(lua.state, -2, "pcall")?; ffi::lua_pushcfunction(lua.state, safe_xpcall); rawset_field(lua.state, -2, "xpcall")?; Ok(()) })(), "Error during applying option `catch_rust_panics`" ) } #[cfg(feature = "async")] if options.thread_cache_size > 0 { extra.recycled_thread_cache = Vec::with_capacity(options.thread_cache_size); } #[cfg(feature = "luau")] mlua_expect!(lua.prepare_luau_state(), "Error preparing Luau state"); lua } /// Constructs a new Lua instance from an existing raw state. /// /// Once called, a returned Lua state is cached in the registry and can be retrieved /// by calling this function again. #[allow(clippy::missing_safety_doc)] pub unsafe fn init_from_ptr(state: *mut ffi::lua_State) -> Lua { let maybe_main_state = get_main_state(state); let main_state = maybe_main_state.unwrap_or(state); let main_state_top = ffi::lua_gettop(main_state); if let Some(lua) = Lua::make_from_ptr(state) { return lua; } mlua_expect!( (|state| { init_error_registry(state)?; // Create the internal metatables and place them in the registry // to prevent them from being garbage collected. init_gc_metatable::>>(state, None)?; init_gc_metatable::(state, None)?; init_gc_metatable::(state, None)?; #[cfg(feature = "async")] { init_gc_metatable::(state, None)?; init_gc_metatable::(state, None)?; init_gc_metatable::(state, None)?; init_gc_metatable::>(state, None)?; } // Init serde metatables #[cfg(feature = "serialize")] crate::serde::init_metatables(state)?; Ok::<_, Error>(()) })(main_state), "Error during Lua construction", ); // Create ref stack thread and place it in the registry to prevent it from being garbage // collected. let ref_thread = mlua_expect!( protect_lua!(state, 0, 0, |state| { let thread = ffi::lua_newthread(state); ffi::luaL_ref(state, ffi::LUA_REGISTRYINDEX); thread }), "Error while creating ref thread", ); // Create empty Waker slot on the ref thread #[cfg(feature = "async")] let ref_waker_idx = { mlua_expect!( push_gc_userdata::>(ref_thread, None), "Error while creating Waker slot" ); ffi::lua_gettop(ref_thread) }; let ref_stack_top = ffi::lua_gettop(ref_thread); // Create ExtraData let extra = Arc::new(UnsafeCell::new(ExtraData { registered_userdata: FxHashMap::default(), registered_userdata_mt: FxHashMap::default(), registry_unref_list: Arc::new(Mutex::new(Some(Vec::new()))), app_data: RefCell::new(HashMap::new()), ref_thread, libs: StdLib::NONE, mem_info: None, safe: false, // We need 1 extra stack space to move values in and out of the ref stack. ref_stack_size: ffi::LUA_MINSTACK - 1, ref_stack_top, ref_free: Vec::new(), wrapped_failures_cache: Vec::with_capacity(WRAPPED_FAILURES_CACHE_SIZE), multivalue_cache: Vec::with_capacity(MULTIVALUE_CACHE_SIZE), #[cfg(feature = "async")] recycled_thread_cache: Vec::new(), #[cfg(feature = "async")] ref_waker_idx, #[cfg(not(feature = "luau"))] hook_callback: None, #[cfg(feature = "lua54")] warn_callback: None, })); mlua_expect!( (|state| { push_gc_userdata(state, Arc::clone(&extra))?; protect_lua!(main_state, 1, 0, fn(state) { let extra_key = &EXTRA_REGISTRY_KEY as *const u8 as *const c_void; ffi::lua_rawsetp(state, ffi::LUA_REGISTRYINDEX, extra_key); }) })(main_state), "Error while storing extra data", ); // Register `DestructedUserdataMT` type get_destructed_userdata_metatable(main_state); let destructed_mt_ptr = ffi::lua_topointer(main_state, -1); (*extra.get()).registered_userdata_mt.insert( destructed_mt_ptr, Some(TypeId::of::()), ); ffi::lua_pop(main_state, 1); mlua_debug_assert!( ffi::lua_gettop(main_state) == main_state_top, "stack leak during creation" ); assert_stack(main_state, ffi::LUA_MINSTACK); Lua { state, main_state: maybe_main_state, extra, ephemeral: true, safe: false, _no_ref_unwind_safe: PhantomData, } } /// Loads the specified subset of the standard libraries into an existing Lua state. /// /// Use the [`StdLib`] flags to specify the libraries you want to load. /// /// [`StdLib`]: crate::StdLib pub fn load_from_std_lib(&self, libs: StdLib) -> Result<()> { if self.safe && libs.contains(StdLib::DEBUG) { return Err(Error::SafetyError( "the unsafe `debug` module can't be loaded in safe mode".to_string(), )); } #[cfg(feature = "luajit")] { if self.safe && libs.contains(StdLib::FFI) { return Err(Error::SafetyError( "the unsafe `ffi` module can't be loaded in safe mode".to_string(), )); } } let state = self.main_state.unwrap_or(self.state); let res = unsafe { load_from_std_lib(state, libs) }; // If `package` library loaded into a safe lua state then disable C modules let extra = unsafe { &mut *self.extra.get() }; #[cfg(not(feature = "luau"))] { let curr_libs = extra.libs; if self.safe && (curr_libs ^ (curr_libs | libs)).contains(StdLib::PACKAGE) { mlua_expect!(self.disable_c_modules(), "Error during disabling C modules"); } } extra.libs |= libs; res } /// Loads module `modname` into an existing Lua state using the specified entrypoint /// function. /// /// Internally calls the Lua function `func` with the string `modname` as an argument, /// sets the call result to `package.loaded[modname]` and returns copy of the result. /// /// If `package.loaded[modname]` value is not nil, returns copy of the value without /// calling the function. /// /// If the function does not return a non-nil value then this method assigns true to /// `package.loaded[modname]`. /// /// Behavior is similar to Lua's [`require`] function. /// /// [`require`]: https://www.lua.org/manual/5.4/manual.html#pdf-require pub fn load_from_function<'lua, S, T>( &'lua self, modname: &S, func: Function<'lua>, ) -> Result where S: AsRef<[u8]> + ?Sized, T: FromLua<'lua>, { let loaded = unsafe { let _sg = StackGuard::new(self.state); check_stack(self.state, 2)?; protect_lua!(self.state, 0, 1, fn(state) { ffi::luaL_getsubtable(state, ffi::LUA_REGISTRYINDEX, cstr!("_LOADED")); })?; Table(self.pop_ref()) }; let modname = self.create_string(modname)?; let value = match loaded.raw_get(modname.clone())? { Value::Nil => { let result = match func.call(modname.clone())? { Value::Nil => Value::Boolean(true), res => res, }; loaded.raw_set(modname, result.clone())?; result } res => res, }; T::from_lua(value, self) } /// Unloads module `modname`. /// /// Removes module from the [`package.loaded`] table which allows to load it again. /// It does not support unloading binary Lua modules since they are internally cached and can be /// unloaded only by closing Lua state. /// /// [`package.loaded`]: https://www.lua.org/manual/5.4/manual.html#pdf-package.loaded pub fn unload(&self, modname: &S) -> Result<()> where S: AsRef<[u8]> + ?Sized, { let loaded = unsafe { let _sg = StackGuard::new(self.state); check_stack(self.state, 2)?; protect_lua!(self.state, 0, 1, fn(state) { ffi::luaL_getsubtable(state, ffi::LUA_REGISTRYINDEX, cstr!("_LOADED")); })?; Table(self.pop_ref()) }; let modname = self.create_string(modname)?; loaded.raw_remove(modname)?; Ok(()) } /// Consumes and leaks `Lua` object, returning a static reference `&'static Lua`. /// /// This function is useful when the `Lua` object is supposed to live for the remainder /// of the program's life. /// In particular in asynchronous context this will allow to spawn Lua tasks to execute /// in background. /// /// Dropping the returned reference will cause a memory leak. If this is not acceptable, /// the reference should first be wrapped with the [`Lua::from_static`] function producing a `Lua`. /// This `Lua` object can then be dropped which will properly release the allocated memory. /// /// [`Lua::from_static`]: #method.from_static #[doc(hidden)] pub fn into_static(self) -> &'static Self { Box::leak(Box::new(self)) } /// Constructs a `Lua` from a static reference to it. /// /// # Safety /// This function is unsafe because improper use may lead to memory problems or undefined behavior. #[doc(hidden)] pub unsafe fn from_static(lua: &'static Lua) -> Self { *Box::from_raw(lua as *const Lua as *mut Lua) } // Executes module entrypoint function, which returns only one Value. // The returned value then pushed onto the stack. #[doc(hidden)] #[cfg(not(tarpaulin_include))] pub unsafe fn entrypoint<'lua, A, R, F>(self, func: F) -> Result where A: FromLuaMulti<'lua>, R: ToLua<'lua>, F: 'static + MaybeSend + Fn(&'lua Lua, A) -> Result, { let entrypoint_inner = |lua: &'lua Lua, func: F| { let nargs = ffi::lua_gettop(lua.state); check_stack(lua.state, 3)?; let mut args = MultiValue::new(); args.reserve(nargs as usize); for _ in 0..nargs { args.push_front(lua.pop_value()); } // We create callback rather than call `func` directly to catch errors // with attached stacktrace. let callback = lua.create_callback(Box::new(move |lua, args| { func(lua, A::from_lua_multi(args, lua)?)?.to_lua_multi(lua) }))?; callback.call(args) }; match entrypoint_inner(mem::transmute(&self), func) { Ok(res) => { self.push_value(res)?; Ok(1) } Err(err) => { self.push_value(Value::Error(err))?; let state = self.state; // Lua (self) must be dropped before triggering longjmp drop(self); ffi::lua_error(state) } } } // A simple module entrypoint without arguments #[doc(hidden)] #[cfg(not(tarpaulin_include))] pub unsafe fn entrypoint1<'lua, R, F>(self, func: F) -> Result where R: ToLua<'lua>, F: 'static + MaybeSend + Fn(&'lua Lua) -> Result, { self.entrypoint(move |lua, _: ()| func(lua)) } /// Sets a 'hook' function that will periodically be called as Lua code executes. /// /// When exactly the hook function is called depends on the contents of the `triggers` /// parameter, see [`HookTriggers`] for more details. /// /// The provided hook function can error, and this error will be propagated through the Lua code /// that was executing at the time the hook was triggered. This can be used to implement a /// limited form of execution limits by setting [`HookTriggers.every_nth_instruction`] and /// erroring once an instruction limit has been reached. /// /// # Example /// /// Shows each line number of code being executed by the Lua interpreter. /// /// ``` /// # use mlua::{Lua, HookTriggers, Result}; /// # fn main() -> Result<()> { /// let lua = Lua::new(); /// lua.set_hook(HookTriggers::every_line(), |_lua, debug| { /// println!("line {}", debug.curr_line()); /// Ok(()) /// })?; /// /// lua.load(r#" /// local x = 2 + 3 /// local y = x * 63 /// local z = string.len(x..", "..y) /// "#).exec() /// # } /// ``` /// /// [`HookTriggers`]: crate::HookTriggers /// [`HookTriggers.every_nth_instruction`]: crate::HookTriggers::every_nth_instruction #[cfg(not(feature = "luau"))] pub fn set_hook(&self, triggers: HookTriggers, callback: F) -> Result<()> where F: 'static + MaybeSend + FnMut(&Lua, Debug) -> Result<()>, { unsafe extern "C" fn hook_proc(state: *mut ffi::lua_State, ar: *mut ffi::lua_Debug) { let lua = match Lua::make_from_ptr(state) { Some(lua) => lua, None => return, }; let extra = lua.extra.get(); callback_error_ext(state, extra, move |_| { let debug = Debug::new(&lua, ar); let hook_cb = (*lua.extra.get()).hook_callback.clone(); let hook_cb = mlua_expect!(hook_cb, "no hook callback set in hook_proc"); #[allow(clippy::match_wild_err_arm)] match hook_cb.try_lock() { Ok(mut cb) => cb(&lua, debug), Err(_) => { mlua_panic!("Lua should not allow hooks to be called within another hook") } }?; Ok(()) }) } let state = self.main_state.ok_or(Error::MainThreadNotAvailable)?; unsafe { (*self.extra.get()).hook_callback = Some(Arc::new(Mutex::new(callback))); ffi::lua_sethook(state, Some(hook_proc), triggers.mask(), triggers.count()); } Ok(()) } /// Remove any hook previously set by `set_hook`. This function has no effect if a hook was not /// previously set. #[cfg(not(feature = "luau"))] pub fn remove_hook(&self) { // If main_state is not available, then sethook wasn't called. let state = match self.main_state { Some(state) => state, None => return, }; unsafe { (*self.extra.get()).hook_callback = None; ffi::lua_sethook(state, None, 0, 0); } } /// Sets the warning function to be used by Lua to emit warnings. /// /// Requires `feature = "lua54"` #[cfg(feature = "lua54")] pub fn set_warning_function(&self, callback: F) where F: 'static + MaybeSend + Fn(&Lua, &CStr, bool) -> Result<()>, { unsafe extern "C" fn warn_proc(ud: *mut c_void, msg: *const c_char, tocont: c_int) { let state = ud as *mut ffi::lua_State; let lua = match Lua::make_from_ptr(state) { Some(lua) => lua, None => return, }; let extra = lua.extra.get(); callback_error_ext(state, extra, move |_| { let cb = mlua_expect!( (*lua.extra.get()).warn_callback.as_ref(), "no warning callback set in warn_proc" ); let msg = CStr::from_ptr(msg); cb(&lua, msg, tocont != 0) }); } let state = self.main_state.unwrap_or(self.state); unsafe { (*self.extra.get()).warn_callback = Some(Box::new(callback)); ffi::lua_setwarnf(state, Some(warn_proc), state as *mut c_void); } } /// Removes warning function previously set by `set_warning_function`. /// /// This function has no effect if a warning function was not previously set. /// /// Requires `feature = "lua54"` #[cfg(feature = "lua54")] pub fn remove_warning_function(&self) { let state = self.main_state.unwrap_or(self.state); unsafe { (*self.extra.get()).warn_callback = None; ffi::lua_setwarnf(state, None, ptr::null_mut()); } } /// Emits a warning with the given message. /// /// A message in a call with `tocont` set to `true` should be continued in another call to this function. /// /// Requires `feature = "lua54"` #[cfg(feature = "lua54")] pub fn warning>>(&self, msg: S, tocont: bool) -> Result<()> { let msg = CString::new(msg).map_err(|err| Error::RuntimeError(err.to_string()))?; unsafe { ffi::lua_warning(self.state, msg.as_ptr(), if tocont { 1 } else { 0 }) }; Ok(()) } /// Gets information about the interpreter runtime stack. /// /// This function returns [`Debug`] structure that can be used to get information about the function /// executing at a given level. Level `0` is the current running function, whereas level `n+1` is the /// function that has called level `n` (except for tail calls, which do not count in the stack). /// /// [`Debug`]: crate::hook::Debug #[cfg(not(feature = "luau"))] pub fn inspect_stack(&self, level: usize) -> Option { unsafe { let mut ar: ffi::lua_Debug = mem::zeroed(); if ffi::lua_getstack(self.state, level as c_int, &mut ar) == 0 { return None; } Some(Debug::new_owned(self, ar)) } } /// Returns the amount of memory (in bytes) currently used inside this Lua state. pub fn used_memory(&self) -> usize { unsafe { let state = self.main_state.unwrap_or(self.state); match (*self.extra.get()).mem_info.map(|x| x.as_ref()) { Some(mem_info) => mem_info.used_memory as usize, None => { // Get data from the Lua GC let used_kbytes = ffi::lua_gc(state, ffi::LUA_GCCOUNT, 0); let used_kbytes_rem = ffi::lua_gc(state, ffi::LUA_GCCOUNTB, 0); (used_kbytes as usize) * 1024 + (used_kbytes_rem as usize) } } } } /// Sets a memory limit (in bytes) on this Lua state. /// /// Once an allocation occurs that would pass this memory limit, /// a `Error::MemoryError` is generated instead. /// Returns previous limit (zero means no limit). /// /// Does not work on module mode where Lua state is managed externally. /// /// Requires `feature = "lua54/lua53/lua52"` #[cfg(any(feature = "lua54", feature = "lua53", feature = "lua52"))] pub fn set_memory_limit(&self, memory_limit: usize) -> Result { unsafe { match (*self.extra.get()).mem_info.map(|mut x| x.as_mut()) { Some(mem_info) => { let prev_limit = mem_info.memory_limit as usize; mem_info.memory_limit = memory_limit as isize; Ok(prev_limit) } None => Err(Error::MemoryLimitNotAvailable), } } } /// Returns true if the garbage collector is currently running automatically. /// /// Requires `feature = "lua54/lua53/lua52"` #[cfg(any( feature = "lua54", feature = "lua53", feature = "lua52", feature = "luau" ))] pub fn gc_is_running(&self) -> bool { let state = self.main_state.unwrap_or(self.state); unsafe { ffi::lua_gc(state, ffi::LUA_GCISRUNNING, 0) != 0 } } /// Stop the Lua GC from running pub fn gc_stop(&self) { let state = self.main_state.unwrap_or(self.state); unsafe { ffi::lua_gc(state, ffi::LUA_GCSTOP, 0) }; } /// Restarts the Lua GC if it is not running pub fn gc_restart(&self) { let state = self.main_state.unwrap_or(self.state); unsafe { ffi::lua_gc(state, ffi::LUA_GCRESTART, 0) }; } /// Perform a full garbage-collection cycle. /// /// It may be necessary to call this function twice to collect all currently unreachable /// objects. Once to finish the current gc cycle, and once to start and finish the next cycle. pub fn gc_collect(&self) -> Result<()> { let state = self.main_state.unwrap_or(self.state); unsafe { check_stack(state, 3)?; protect_lua!(state, 0, 0, fn(state) ffi::lua_gc(state, ffi::LUA_GCCOLLECT, 0)) } } /// Steps the garbage collector one indivisible step. /// /// Returns true if this has finished a collection cycle. pub fn gc_step(&self) -> Result { self.gc_step_kbytes(0) } /// Steps the garbage collector as though memory had been allocated. /// /// if `kbytes` is 0, then this is the same as calling `gc_step`. Returns true if this step has /// finished a collection cycle. pub fn gc_step_kbytes(&self, kbytes: c_int) -> Result { let state = self.main_state.unwrap_or(self.state); unsafe { check_stack(state, 3)?; protect_lua!(state, 0, 0, |state| { ffi::lua_gc(state, ffi::LUA_GCSTEP, kbytes) != 0 }) } } /// Sets the 'pause' value of the collector. /// /// Returns the previous value of 'pause'. More information can be found in the Lua /// [documentation][lua_doc]. /// /// [lua_doc]: https://www.lua.org/manual/5.4/manual.html#2.5 #[cfg(not(feature = "luau"))] pub fn gc_set_pause(&self, pause: c_int) -> c_int { let state = self.main_state.unwrap_or(self.state); unsafe { ffi::lua_gc(state, ffi::LUA_GCSETPAUSE, pause) } } /// Sets the 'step multiplier' value of the collector. /// /// Returns the previous value of the 'step multiplier'. More information can be found in the /// Lua [documentation][lua_doc]. /// /// [lua_doc]: https://www.lua.org/manual/5.4/manual.html#2.5 pub fn gc_set_step_multiplier(&self, step_multiplier: c_int) -> c_int { let state = self.main_state.unwrap_or(self.state); unsafe { ffi::lua_gc(state, ffi::LUA_GCSETSTEPMUL, step_multiplier) } } /// Changes the collector to incremental mode with the given parameters. /// /// Returns the previous mode (always `GCMode::Incremental` in Lua < 5.4). /// More information can be found in the Lua [documentation][lua_doc]. /// /// [lua_doc]: https://www.lua.org/manual/5.4/manual.html#2.5.1 #[cfg(not(feature = "luau"))] pub fn gc_inc(&self, pause: c_int, step_multiplier: c_int, step_size: c_int) -> GCMode { let state = self.main_state.unwrap_or(self.state); #[cfg(any( feature = "lua53", feature = "lua52", feature = "lua51", feature = "luajit" ))] { if pause > 0 { unsafe { ffi::lua_gc(state, ffi::LUA_GCSETPAUSE, pause) }; } if step_multiplier > 0 { unsafe { ffi::lua_gc(state, ffi::LUA_GCSETSTEPMUL, step_multiplier) }; } let _ = step_size; // Ignored GCMode::Incremental } #[cfg(feature = "lua54")] let prev_mode = unsafe { ffi::lua_gc(state, ffi::LUA_GCINC, pause, step_multiplier, step_size) }; #[cfg(feature = "lua54")] match prev_mode { ffi::LUA_GCINC => GCMode::Incremental, ffi::LUA_GCGEN => GCMode::Generational, _ => unreachable!(), } } /// Changes the collector to generational mode with the given parameters. /// /// Returns the previous mode. More information about the generational GC /// can be found in the Lua 5.4 [documentation][lua_doc]. /// /// Requires `feature = "lua54"` /// /// [lua_doc]: https://www.lua.org/manual/5.4/manual.html#2.5.2 #[cfg(any(feature = "lua54"))] pub fn gc_gen(&self, minor_multiplier: c_int, major_multiplier: c_int) -> GCMode { let state = self.main_state.unwrap_or(self.state); let prev_mode = unsafe { ffi::lua_gc(state, ffi::LUA_GCGEN, minor_multiplier, major_multiplier) }; match prev_mode { ffi::LUA_GCGEN => GCMode::Generational, ffi::LUA_GCINC => GCMode::Incremental, _ => unreachable!(), } } /// Returns Lua source code as a `Chunk` builder type. /// /// In order to actually compile or run the resulting code, you must call [`Chunk::exec`] or /// similar on the returned builder. Code is not even parsed until one of these methods is /// called. /// /// If this `Lua` was created with [`unsafe_new`], `load` will automatically detect and load /// chunks of either text or binary type, as if passing `bt` mode to `luaL_loadbufferx`. /// /// [`Chunk::exec`]: crate::Chunk::exec /// [`unsafe_new`]: #method.unsafe_new #[track_caller] pub fn load<'lua, 'a, S>(&'lua self, source: &'a S) -> Chunk<'lua, 'a> where S: AsChunk<'lua> + ?Sized, { Chunk { lua: self, source: source.source(), name: match source.name() { Some(name) => Some(name), None => CString::new(Location::caller().to_string()).ok(), }, env: source.env(self), mode: source.mode(), } } fn load_chunk<'lua>( &'lua self, source: &[u8], name: Option<&CString>, env: Option>, mode: Option, ) -> Result> { unsafe { let _sg = StackGuard::new(self.state); check_stack(self.state, 1)?; let mode_str = match mode { Some(ChunkMode::Binary) if self.safe => { return Err(Error::SafetyError( "binary chunks are disabled in safe mode".to_string(), )) } Some(ChunkMode::Binary) => cstr!("b"), Some(ChunkMode::Text) => cstr!("t"), #[cfg(not(feature = "luau"))] None if source.starts_with(ffi::LUA_SIGNATURE) && self.safe => { return Err(Error::SafetyError( "binary chunks are disabled in safe mode".to_string(), )) } None => cstr!("bt"), }; match ffi::luaL_loadbufferx( self.state, source.as_ptr() as *const c_char, source.len(), name.map(|n| n.as_ptr()).unwrap_or_else(ptr::null), mode_str, ) { ffi::LUA_OK => { if let Some(env) = env { self.push_value(env)?; #[cfg(any(feature = "lua54", feature = "lua53", feature = "lua52"))] ffi::lua_setupvalue(self.state, -2, 1); #[cfg(any(feature = "lua51", feature = "luajit", feature = "luau"))] ffi::lua_setfenv(self.state, -2); } Ok(Function(self.pop_ref())) } err => Err(pop_error(self.state, err)), } } } /// Create and return an interned Lua string. Lua strings can be arbitrary [u8] data including /// embedded nulls, so in addition to `&str` and `&String`, you can also pass plain `&[u8]` /// here. pub fn create_string(&self, s: &S) -> Result where S: AsRef<[u8]> + ?Sized, { unsafe { let _sg = StackGuard::new(self.state); check_stack(self.state, 3)?; push_string(self.state, s)?; Ok(String(self.pop_ref())) } } /// Creates and returns a new empty table. pub fn create_table(&self) -> Result { unsafe { let _sg = StackGuard::new(self.state); check_stack(self.state, 2)?; protect_lua!(self.state, 0, 1, fn(state) ffi::lua_newtable(state))?; Ok(Table(self.pop_ref())) } } /// Creates and returns a new empty table, with the specified capacity. /// `narr` is a hint for how many elements the table will have as a sequence; /// `nrec` is a hint for how many other elements the table will have. /// Lua may use these hints to preallocate memory for the new table. pub fn create_table_with_capacity(&self, narr: c_int, nrec: c_int) -> Result
{ unsafe { let _sg = StackGuard::new(self.state); check_stack(self.state, 3)?; push_table(self.state, narr, nrec)?; Ok(Table(self.pop_ref())) } } /// Creates a table and fills it with values from an iterator. pub fn create_table_from<'lua, K, V, I>(&'lua self, iter: I) -> Result> where K: ToLua<'lua>, V: ToLua<'lua>, I: IntoIterator, { unsafe { let _sg = StackGuard::new(self.state); check_stack(self.state, 6)?; let iter = iter.into_iter(); let lower_bound = iter.size_hint().0; push_table(self.state, 0, lower_bound as c_int)?; for (k, v) in iter { self.push_value(k.to_lua(self)?)?; self.push_value(v.to_lua(self)?)?; protect_lua!(self.state, 3, 1, fn(state) ffi::lua_rawset(state, -3))?; } Ok(Table(self.pop_ref())) } } /// Creates a table from an iterator of values, using `1..` as the keys. pub fn create_sequence_from<'lua, T, I>(&'lua self, iter: I) -> Result> where T: ToLua<'lua>, I: IntoIterator, { unsafe { let _sg = StackGuard::new(self.state); check_stack(self.state, 5)?; let iter = iter.into_iter(); let lower_bound = iter.size_hint().0; push_table(self.state, lower_bound as c_int, 0)?; for (i, v) in iter.enumerate() { self.push_value(v.to_lua(self)?)?; protect_lua!(self.state, 2, 1, |state| { ffi::lua_rawseti(state, -2, (i + 1) as Integer); })?; } Ok(Table(self.pop_ref())) } } /// Wraps a Rust function or closure, creating a callable Lua function handle to it. /// /// The function's return value is always a `Result`: If the function returns `Err`, the error /// is raised as a Lua error, which can be caught using `(x)pcall` or bubble up to the Rust code /// that invoked the Lua code. This allows using the `?` operator to propagate errors through /// intermediate Lua code. /// /// If the function returns `Ok`, the contained value will be converted to one or more Lua /// values. For details on Rust-to-Lua conversions, refer to the [`ToLua`] and [`ToLuaMulti`] /// traits. /// /// # Examples /// /// Create a function which prints its argument: /// /// ``` /// # use mlua::{Lua, Result}; /// # fn main() -> Result<()> { /// # let lua = Lua::new(); /// let greet = lua.create_function(|_, name: String| { /// println!("Hello, {}!", name); /// Ok(()) /// }); /// # let _ = greet; // used /// # Ok(()) /// # } /// ``` /// /// Use tuples to accept multiple arguments: /// /// ``` /// # use mlua::{Lua, Result}; /// # fn main() -> Result<()> { /// # let lua = Lua::new(); /// let print_person = lua.create_function(|_, (name, age): (String, u8)| { /// println!("{} is {} years old!", name, age); /// Ok(()) /// }); /// # let _ = print_person; // used /// # Ok(()) /// # } /// ``` /// /// [`ToLua`]: crate::ToLua /// [`ToLuaMulti`]: crate::ToLuaMulti pub fn create_function<'lua, 'callback, A, R, F>(&'lua self, func: F) -> Result> where 'lua: 'callback, A: FromLuaMulti<'callback>, R: ToLuaMulti<'callback>, F: 'static + MaybeSend + Fn(&'callback Lua, A) -> Result, { self.create_callback(Box::new(move |lua, args| { func(lua, A::from_lua_multi(args, lua)?)?.to_lua_multi(lua) })) } /// Wraps a Rust mutable closure, creating a callable Lua function handle to it. /// /// This is a version of [`create_function`] that accepts a FnMut argument. Refer to /// [`create_function`] for more information about the implementation. /// /// [`create_function`]: #method.create_function pub fn create_function_mut<'lua, 'callback, A, R, F>( &'lua self, func: F, ) -> Result> where 'lua: 'callback, A: FromLuaMulti<'callback>, R: ToLuaMulti<'callback>, F: 'static + MaybeSend + FnMut(&'callback Lua, A) -> Result, { let func = RefCell::new(func); self.create_function(move |lua, args| { (&mut *func .try_borrow_mut() .map_err(|_| Error::RecursiveMutCallback)?)(lua, args) }) } /// Wraps a C function, creating a callable Lua function handle to it. /// /// # Safety /// This function is unsafe because provides a way to execute unsafe C function. pub unsafe fn create_c_function(&self, func: ffi::lua_CFunction) -> Result { check_stack(self.state, 1)?; ffi::lua_pushcfunction(self.state, func); Ok(Function(self.pop_ref())) } /// Wraps a Rust async function or closure, creating a callable Lua function handle to it. /// /// While executing the function Rust will poll Future and if the result is not ready, call /// `yield()` passing internal representation of a `Poll::Pending` value. /// /// The function must be called inside Lua coroutine ([`Thread`]) to be able to suspend its execution. /// An executor should be used to poll [`AsyncThread`] and mlua will take a provided Waker /// in that case. Otherwise noop waker will be used if try to call the function outside of Rust /// executors. /// /// The family of `call_async()` functions takes care about creating [`Thread`]. /// /// Requires `feature = "async"` /// /// # Examples /// /// Non blocking sleep: /// /// ``` /// use std::time::Duration; /// use futures_timer::Delay; /// use mlua::{Lua, Result}; /// /// async fn sleep(_lua: &Lua, n: u64) -> Result<&'static str> { /// Delay::new(Duration::from_millis(n)).await; /// Ok("done") /// } /// /// #[tokio::main] /// async fn main() -> Result<()> { /// let lua = Lua::new(); /// lua.globals().set("sleep", lua.create_async_function(sleep)?)?; /// let res: String = lua.load("return sleep(...)").call_async(100).await?; // Sleep 100ms /// assert_eq!(res, "done"); /// Ok(()) /// } /// ``` /// /// [`Thread`]: crate::Thread /// [`AsyncThread`]: crate::AsyncThread #[cfg(feature = "async")] #[cfg_attr(docsrs, doc(cfg(feature = "async")))] pub fn create_async_function<'lua, 'callback, A, R, F, FR>( &'lua self, func: F, ) -> Result> where 'lua: 'callback, A: FromLuaMulti<'callback>, R: ToLuaMulti<'callback>, F: 'static + MaybeSend + Fn(&'callback Lua, A) -> FR, FR: 'lua + Future>, { self.create_async_callback(Box::new(move |lua, args| { let args = match A::from_lua_multi(args, lua) { Ok(args) => args, Err(e) => return Box::pin(future::err(e)), }; Box::pin(func(lua, args).and_then(move |ret| future::ready(ret.to_lua_multi(lua)))) })) } /// Wraps a Lua function into a new thread (or coroutine). /// /// Equivalent to `coroutine.create`. pub fn create_thread<'lua>(&'lua self, func: Function<'lua>) -> Result> { unsafe { let _sg = StackGuard::new(self.state); check_stack(self.state, 3)?; let thread_state = protect_lua!(self.state, 0, 1, |state| ffi::lua_newthread(state))?; self.push_ref(&func.0); ffi::lua_xmove(self.state, thread_state, 1); Ok(Thread(self.pop_ref())) } } /// Wraps a Lua function into a new or recycled thread (coroutine). #[cfg(feature = "async")] pub(crate) fn create_recycled_thread<'lua>( &'lua self, func: Function<'lua>, ) -> Result> { #[cfg(any(feature = "lua54", all(feature = "luajit", feature = "vendored")))] unsafe { let _sg = StackGuard::new(self.state); check_stack(self.state, 1)?; let extra = &mut *self.extra.get(); if let Some(index) = extra.recycled_thread_cache.pop() { let thread_state = ffi::lua_tothread(extra.ref_thread, index); self.push_ref(&func.0); ffi::lua_xmove(self.state, thread_state, 1); return Ok(Thread(LuaRef { lua: self, index })); } }; self.create_thread(func) } /// Resets thread (coroutine) and returns to the cache for later use. #[cfg(feature = "async")] #[cfg(any(feature = "lua54", all(feature = "luajit", feature = "vendored")))] pub(crate) unsafe fn recycle_thread(&self, thread: &mut Thread) { let extra = &mut *self.extra.get(); let thread_state = ffi::lua_tothread(extra.ref_thread, thread.0.index); if extra.recycled_thread_cache.len() < extra.recycled_thread_cache.capacity() { #[cfg(feature = "lua54")] let status = ffi::lua_resetthread(thread_state); #[cfg(feature = "lua54")] if status != ffi::LUA_OK { return; } #[cfg(all(feature = "luajit", feature = "vendored"))] ffi::lua_resetthread(self.state, thread_state); #[cfg(feature = "luau")] ffi::lua_resetthread(thread_state); extra.recycled_thread_cache.push(thread.0.index); thread.0.index = 0; } } /// Create a Lua userdata object from a custom userdata type. pub fn create_userdata(&self, data: T) -> Result where T: 'static + MaybeSend + UserData, { unsafe { self.make_userdata(UserDataCell::new(data)) } } /// Create a Lua userdata object from a custom serializable userdata type. /// /// Requires `feature = "serialize"` #[cfg(feature = "serialize")] #[cfg_attr(docsrs, doc(cfg(feature = "serialize")))] pub fn create_ser_userdata(&self, data: T) -> Result where T: 'static + MaybeSend + UserData + Serialize, { unsafe { self.make_userdata(UserDataCell::new_ser(data)) } } /// Returns a handle to the global environment. pub fn globals(&self) -> Table { unsafe { let _sg = StackGuard::new(self.state); assert_stack(self.state, 1); #[cfg(any(feature = "lua54", feature = "lua53", feature = "lua52"))] ffi::lua_rawgeti(self.state, ffi::LUA_REGISTRYINDEX, ffi::LUA_RIDX_GLOBALS); #[cfg(any(feature = "lua51", feature = "luajit", feature = "luau"))] ffi::lua_pushvalue(self.state, ffi::LUA_GLOBALSINDEX); Table(self.pop_ref()) } } /// Returns a handle to the active `Thread`. For calls to `Lua` this will be the main Lua thread, /// for parameters given to a callback, this will be whatever Lua thread called the callback. pub fn current_thread(&self) -> Thread { unsafe { let _sg = StackGuard::new(self.state); assert_stack(self.state, 1); ffi::lua_pushthread(self.state); Thread(self.pop_ref()) } } /// Calls the given function with a `Scope` parameter, giving the function the ability to create /// userdata and callbacks from rust types that are !Send or non-'static. /// /// The lifetime of any function or userdata created through `Scope` lasts only until the /// completion of this method call, on completion all such created values are automatically /// dropped and Lua references to them are invalidated. If a script accesses a value created /// through `Scope` outside of this method, a Lua error will result. Since we can ensure the /// lifetime of values created through `Scope`, and we know that `Lua` cannot be sent to another /// thread while `Scope` is live, it is safe to allow !Send datatypes and whose lifetimes only /// outlive the scope lifetime. /// /// Inside the scope callback, all handles created through Scope will share the same unique 'lua /// lifetime of the parent `Lua`. This allows scoped and non-scoped values to be mixed in /// API calls, which is very useful (e.g. passing a scoped userdata to a non-scoped function). /// However, this also enables handles to scoped values to be trivially leaked from the given /// callback. This is not dangerous, though! After the callback returns, all scoped values are /// invalidated, which means that though references may exist, the Rust types backing them have /// dropped. `Function` types will error when called, and `AnyUserData` will be typeless. It /// would be impossible to prevent handles to scoped values from escaping anyway, since you /// would always be able to smuggle them through Lua state. pub fn scope<'lua, 'scope, R, F>(&'lua self, f: F) -> Result where 'lua: 'scope, R: 'static, F: FnOnce(&Scope<'lua, 'scope>) -> Result, { f(&Scope::new(self)) } /// An asynchronous version of [`scope`] that allows to create scoped async functions and /// execute them. /// /// Requires `feature = "async"` /// /// [`scope`]: #method.scope #[cfg(feature = "async")] #[cfg_attr(docsrs, doc(cfg(feature = "async")))] pub fn async_scope<'lua, 'scope, R, F, FR>( &'lua self, f: F, ) -> LocalBoxFuture<'scope, Result> where 'lua: 'scope, R: 'static, F: FnOnce(Scope<'lua, 'scope>) -> FR, FR: 'scope + Future>, { Box::pin(f(Scope::new(self))) } /// Attempts to coerce a Lua value into a String in a manner consistent with Lua's internal /// behavior. /// /// To succeed, the value must be a string (in which case this is a no-op), an integer, or a /// number. pub fn coerce_string<'lua>(&'lua self, v: Value<'lua>) -> Result>> { Ok(match v { Value::String(s) => Some(s), v => unsafe { let _sg = StackGuard::new(self.state); check_stack(self.state, 4)?; self.push_value(v)?; let res = protect_lua!(self.state, 1, 1, |state| { ffi::lua_tolstring(state, -1, ptr::null_mut()) })?; if !res.is_null() { Some(String(self.pop_ref())) } else { None } }, }) } /// Attempts to coerce a Lua value into an integer in a manner consistent with Lua's internal /// behavior. /// /// To succeed, the value must be an integer, a floating point number that has an exact /// representation as an integer, or a string that can be converted to an integer. Refer to the /// Lua manual for details. pub fn coerce_integer(&self, v: Value) -> Result> { Ok(match v { Value::Integer(i) => Some(i), v => unsafe { let _sg = StackGuard::new(self.state); check_stack(self.state, 2)?; self.push_value(v)?; let mut isint = 0; let i = ffi::lua_tointegerx(self.state, -1, &mut isint); if isint == 0 { None } else { Some(i) } }, }) } /// Attempts to coerce a Lua value into a Number in a manner consistent with Lua's internal /// behavior. /// /// To succeed, the value must be a number or a string that can be converted to a number. Refer /// to the Lua manual for details. pub fn coerce_number(&self, v: Value) -> Result> { Ok(match v { Value::Number(n) => Some(n), v => unsafe { let _sg = StackGuard::new(self.state); check_stack(self.state, 2)?; self.push_value(v)?; let mut isnum = 0; let n = ffi::lua_tonumberx(self.state, -1, &mut isnum); if isnum == 0 { None } else { Some(n) } }, }) } /// Converts a value that implements `ToLua` into a `Value` instance. pub fn pack<'lua, T: ToLua<'lua>>(&'lua self, t: T) -> Result> { t.to_lua(self) } /// Converts a `Value` instance into a value that implements `FromLua`. pub fn unpack<'lua, T: FromLua<'lua>>(&'lua self, value: Value<'lua>) -> Result { T::from_lua(value, self) } /// Converts a value that implements `ToLuaMulti` into a `MultiValue` instance. pub fn pack_multi<'lua, T: ToLuaMulti<'lua>>(&'lua self, t: T) -> Result> { t.to_lua_multi(self) } /// Converts a `MultiValue` instance into a value that implements `FromLuaMulti`. pub fn unpack_multi<'lua, T: FromLuaMulti<'lua>>( &'lua self, value: MultiValue<'lua>, ) -> Result { T::from_lua_multi(value, self) } /// Set a value in the Lua registry based on a string name. /// /// This value will be available to rust from all `Lua` instances which share the same main /// state. pub fn set_named_registry_value<'lua, S, T>(&'lua self, name: &S, t: T) -> Result<()> where S: AsRef<[u8]> + ?Sized, T: ToLua<'lua>, { let t = t.to_lua(self)?; unsafe { let _sg = StackGuard::new(self.state); check_stack(self.state, 5)?; self.push_value(t)?; rawset_field(self.state, ffi::LUA_REGISTRYINDEX, name) } } /// Get a value from the Lua registry based on a string name. /// /// Any Lua instance which shares the underlying main state may call this method to /// get a value previously set by [`set_named_registry_value`]. /// /// [`set_named_registry_value`]: #method.set_named_registry_value pub fn named_registry_value<'lua, S, T>(&'lua self, name: &S) -> Result where S: AsRef<[u8]> + ?Sized, T: FromLua<'lua>, { let value = unsafe { let _sg = StackGuard::new(self.state); check_stack(self.state, 3)?; push_string(self.state, name)?; ffi::lua_rawget(self.state, ffi::LUA_REGISTRYINDEX); self.pop_value() }; T::from_lua(value, self) } /// Removes a named value in the Lua registry. /// /// Equivalent to calling [`set_named_registry_value`] with a value of Nil. /// /// [`set_named_registry_value`]: #method.set_named_registry_value pub fn unset_named_registry_value(&self, name: &S) -> Result<()> where S: AsRef<[u8]> + ?Sized, { self.set_named_registry_value(name, Nil) } /// Place a value in the Lua registry with an auto-generated key. /// /// This value will be available to Rust from all `Lua` instances which share the same main /// state. /// /// Be warned, garbage collection of values held inside the registry is not automatic, see /// [`RegistryKey`] for more details. /// However, dropped [`RegistryKey`]s automatically reused to store new values. /// /// [`RegistryKey`]: crate::RegistryKey pub fn create_registry_value<'lua, T: ToLua<'lua>>(&'lua self, t: T) -> Result { let t = t.to_lua(self)?; unsafe { let _sg = StackGuard::new(self.state); check_stack(self.state, 4)?; let unref_list = (*self.extra.get()).registry_unref_list.clone(); self.push_value(t)?; // Try to reuse previously allocated RegistryKey let unref_list2 = unref_list.clone(); let mut unref_list2 = mlua_expect!(unref_list2.lock(), "unref list poisoned"); if let Some(registry_id) = unref_list2.as_mut().and_then(|x| x.pop()) { // It must be safe to replace the value without triggering memory error ffi::lua_rawseti(self.state, ffi::LUA_REGISTRYINDEX, registry_id as Integer); return Ok(RegistryKey { registry_id, unref_list, }); } // Allocate a new RegistryKey let registry_id = protect_lua!(self.state, 1, 0, |state| { ffi::luaL_ref(state, ffi::LUA_REGISTRYINDEX) })?; Ok(RegistryKey { registry_id, unref_list, }) } } /// Get a value from the Lua registry by its `RegistryKey` /// /// Any Lua instance which shares the underlying main state may call this method to get a value /// previously placed by [`create_registry_value`]. /// /// [`create_registry_value`]: #method.create_registry_value pub fn registry_value<'lua, T: FromLua<'lua>>(&'lua self, key: &RegistryKey) -> Result { if !self.owns_registry_value(key) { return Err(Error::MismatchedRegistryKey); } let value = unsafe { let _sg = StackGuard::new(self.state); check_stack(self.state, 1)?; ffi::lua_rawgeti( self.state, ffi::LUA_REGISTRYINDEX, key.registry_id as Integer, ); self.pop_value() }; T::from_lua(value, self) } /// Removes a value from the Lua registry. /// /// You may call this function to manually remove a value placed in the registry with /// [`create_registry_value`]. In addition to manual `RegistryKey` removal, you can also call /// [`expire_registry_values`] to automatically remove values from the registry whose /// `RegistryKey`s have been dropped. /// /// [`create_registry_value`]: #method.create_registry_value /// [`expire_registry_values`]: #method.expire_registry_values pub fn remove_registry_value(&self, key: RegistryKey) -> Result<()> { if !self.owns_registry_value(&key) { return Err(Error::MismatchedRegistryKey); } unsafe { ffi::luaL_unref(self.state, ffi::LUA_REGISTRYINDEX, key.take()); } Ok(()) } /// Replaces a value in the Lua registry by its `RegistryKey`. /// /// See [`create_registry_value`] for more details. /// /// [`create_registry_value`]: #method.create_registry_value pub fn replace_registry_value<'lua, T: ToLua<'lua>>( &'lua self, key: &RegistryKey, t: T, ) -> Result<()> { if !self.owns_registry_value(key) { return Err(Error::MismatchedRegistryKey); } let t = t.to_lua(self)?; unsafe { let _sg = StackGuard::new(self.state); check_stack(self.state, 2)?; self.push_value(t)?; // It must be safe to replace the value without triggering memory error ffi::lua_rawseti( self.state, ffi::LUA_REGISTRYINDEX, key.registry_id as Integer, ); Ok(()) } } /// Returns true if the given `RegistryKey` was created by a `Lua` which shares the underlying /// main state with this `Lua` instance. /// /// Other than this, methods that accept a `RegistryKey` will return /// `Error::MismatchedRegistryKey` if passed a `RegistryKey` that was not created with a /// matching `Lua` state. pub fn owns_registry_value(&self, key: &RegistryKey) -> bool { let registry_unref_list = unsafe { &(*self.extra.get()).registry_unref_list }; Arc::ptr_eq(&key.unref_list, registry_unref_list) } /// Remove any registry values whose `RegistryKey`s have all been dropped. /// /// Unlike normal handle values, `RegistryKey`s do not automatically remove themselves on Drop, /// but you can call this method to remove any unreachable registry values not manually removed /// by `Lua::remove_registry_value`. pub fn expire_registry_values(&self) { unsafe { let mut unref_list = mlua_expect!( (*self.extra.get()).registry_unref_list.lock(), "unref list poisoned" ); let unref_list = mem::replace(&mut *unref_list, Some(Vec::new())); for id in mlua_expect!(unref_list, "unref list not set") { ffi::luaL_unref(self.state, ffi::LUA_REGISTRYINDEX, id); } } } /// Sets or replaces an application data object of type `T`. /// /// Application data could be accessed at any time by using [`Lua::app_data_ref()`] or [`Lua::app_data_mut()`] /// methods where `T` is the data type. /// /// # Examples /// /// ``` /// use mlua::{Lua, Result}; /// /// fn hello(lua: &Lua, _: ()) -> Result<()> { /// let mut s = lua.app_data_mut::<&str>().unwrap(); /// assert_eq!(*s, "hello"); /// *s = "world"; /// Ok(()) /// } /// /// fn main() -> Result<()> { /// let lua = Lua::new(); /// lua.set_app_data("hello"); /// lua.create_function(hello)?.call(())?; /// let s = lua.app_data_ref::<&str>().unwrap(); /// assert_eq!(*s, "world"); /// Ok(()) /// } /// ``` pub fn set_app_data(&self, data: T) { let extra = unsafe { &mut (*self.extra.get()) }; extra .app_data .try_borrow_mut() .expect("cannot borrow mutably app data container") .insert(TypeId::of::(), Box::new(data)); } /// Gets a reference to an application data object stored by [`Lua::set_app_data()`] of type `T`. pub fn app_data_ref(&self) -> Option> { let extra = unsafe { &(*self.extra.get()) }; let app_data = extra .app_data .try_borrow() .expect("cannot borrow app data container"); let value = app_data.get(&TypeId::of::())?.downcast_ref::()? as *const _; Some(Ref::map(app_data, |_| unsafe { &*value })) } /// Gets a mutable reference to an application data object stored by [`Lua::set_app_data()`] of type `T`. pub fn app_data_mut(&self) -> Option> { let extra = unsafe { &(*self.extra.get()) }; let mut app_data = extra .app_data .try_borrow_mut() .expect("cannot mutably borrow app data container"); let value = app_data.get_mut(&TypeId::of::())?.downcast_mut::()? as *mut _; Some(RefMut::map(app_data, |_| unsafe { &mut *value })) } /// Removes an application data of type `T`. pub fn remove_app_data(&self) -> Option { let extra = unsafe { &mut (*self.extra.get()) }; extra .app_data .try_borrow_mut() .expect("cannot mutably borrow app data container") .remove(&TypeId::of::()) .and_then(|data| data.downcast().ok().map(|data| *data)) } // Uses 2 stack spaces, does not call checkstack pub(crate) unsafe fn push_value(&self, value: Value) -> Result<()> { match value { Value::Nil => { ffi::lua_pushnil(self.state); } Value::Boolean(b) => { ffi::lua_pushboolean(self.state, if b { 1 } else { 0 }); } Value::LightUserData(ud) => { ffi::lua_pushlightuserdata(self.state, ud.0); } Value::Integer(i) => { ffi::lua_pushinteger(self.state, i); } Value::Number(n) => { ffi::lua_pushnumber(self.state, n); } Value::String(s) => { self.push_ref(&s.0); } Value::Table(t) => { self.push_ref(&t.0); } Value::Function(f) => { self.push_ref(&f.0); } Value::Thread(t) => { self.push_ref(&t.0); } Value::UserData(ud) => { self.push_ref(&ud.0); } Value::Error(err) => { push_gc_userdata(self.state, WrappedFailure::Error(err))?; } } Ok(()) } // Uses 2 stack spaces, does not call checkstack pub(crate) unsafe fn pop_value(&self) -> Value { let state = self.state; match ffi::lua_type(state, -1) { ffi::LUA_TNIL => { ffi::lua_pop(state, 1); Nil } ffi::LUA_TBOOLEAN => { let b = Value::Boolean(ffi::lua_toboolean(state, -1) != 0); ffi::lua_pop(state, 1); b } ffi::LUA_TLIGHTUSERDATA => { let ud = Value::LightUserData(LightUserData(ffi::lua_touserdata(state, -1))); ffi::lua_pop(state, 1); ud } ffi::LUA_TNUMBER => { if ffi::lua_isinteger(state, -1) != 0 { let i = Value::Integer(ffi::lua_tointeger(state, -1)); ffi::lua_pop(state, 1); i } else { let n = Value::Number(ffi::lua_tonumber(state, -1)); ffi::lua_pop(state, 1); n } } ffi::LUA_TSTRING => Value::String(String(self.pop_ref())), ffi::LUA_TTABLE => Value::Table(Table(self.pop_ref())), ffi::LUA_TFUNCTION => Value::Function(Function(self.pop_ref())), ffi::LUA_TUSERDATA => { // We must prevent interaction with userdata types other than UserData OR a WrappedError. // WrappedPanics are automatically resumed. match get_gc_userdata::(state, -1).as_mut() { Some(WrappedFailure::Error(err)) => { let err = err.clone(); ffi::lua_pop(state, 1); Value::Error(err) } Some(WrappedFailure::Panic(panic)) => { if let Some(panic) = panic.take() { ffi::lua_pop(state, 1); resume_unwind(panic); } // Previously resumed panic? ffi::lua_pop(state, 1); Nil } _ => Value::UserData(AnyUserData(self.pop_ref())), } } ffi::LUA_TTHREAD => Value::Thread(Thread(self.pop_ref())), #[cfg(feature = "luajit")] ffi::LUA_TCDATA => { ffi::lua_pop(state, 1); // TODO: Fix this in a next major release panic!("cdata objects cannot be handled by mlua yet"); } _ => mlua_panic!("LUA_TNONE in pop_value"), } } // Pushes a LuaRef value onto the stack, uses 1 stack space, does not call checkstack pub(crate) unsafe fn push_ref(&self, lref: &LuaRef) { assert!( Arc::ptr_eq(&lref.lua.extra, &self.extra), "Lua instance passed Value created from a different main Lua state" ); let extra = &*self.extra.get(); ffi::lua_pushvalue(extra.ref_thread, lref.index); ffi::lua_xmove(extra.ref_thread, self.state, 1); } // Pops the topmost element of the stack and stores a reference to it. This pins the object, // preventing garbage collection until the returned `LuaRef` is dropped. // // References are stored in the stack of a specially created auxiliary thread that exists only // to store reference values. This is much faster than storing these in the registry, and also // much more flexible and requires less bookkeeping than storing them directly in the currently // used stack. The implementation is somewhat biased towards the use case of a relatively small // number of short term references being created, and `RegistryKey` being used for long term // references. pub(crate) unsafe fn pop_ref(&self) -> LuaRef { let extra = &mut *self.extra.get(); ffi::lua_xmove(self.state, extra.ref_thread, 1); let index = ref_stack_pop(extra); LuaRef { lua: self, index } } pub(crate) fn clone_ref<'lua>(&'lua self, lref: &LuaRef<'lua>) -> LuaRef<'lua> { unsafe { let extra = &mut *self.extra.get(); ffi::lua_pushvalue(extra.ref_thread, lref.index); let index = ref_stack_pop(extra); LuaRef { lua: self, index } } } pub(crate) fn drop_ref(&self, lref: &LuaRef) { unsafe { let extra = &mut *self.extra.get(); ffi::lua_pushnil(extra.ref_thread); ffi::lua_replace(extra.ref_thread, lref.index); extra.ref_free.push(lref.index); } } /// Executes the function provided on the ref thread #[inline] pub(crate) unsafe fn ref_thread_exec(&self, f: F) -> R where F: FnOnce(*mut ffi::lua_State) -> R, { let ref_thread = (*self.extra.get()).ref_thread; f(ref_thread) } pub(crate) unsafe fn push_userdata_metatable(&self) -> Result<()> { let extra = &mut *self.extra.get(); let type_id = TypeId::of::(); if let Some(&table_id) = extra.registered_userdata.get(&type_id) { ffi::lua_rawgeti(self.state, ffi::LUA_REGISTRYINDEX, table_id as Integer); return Ok(()); } let _sg = StackGuard::new_extra(self.state, 1); check_stack(self.state, 13)?; let mut fields = StaticUserDataFields::default(); let mut methods = StaticUserDataMethods::default(); T::add_fields(&mut fields); T::add_methods(&mut methods); // Prepare metatable, add meta methods first and then meta fields let metatable_nrec = methods.meta_methods.len() + fields.meta_fields.len(); #[cfg(feature = "async")] let metatable_nrec = metatable_nrec + methods.async_meta_methods.len(); push_table(self.state, 0, metatable_nrec as c_int)?; for (k, m) in methods.meta_methods { self.push_value(Value::Function(self.create_callback(m)?))?; rawset_field(self.state, -2, k.validate()?.name())?; } #[cfg(feature = "async")] for (k, m) in methods.async_meta_methods { self.push_value(Value::Function(self.create_async_callback(m)?))?; rawset_field(self.state, -2, k.validate()?.name())?; } for (k, f) in fields.meta_fields { self.push_value(f(self)?)?; rawset_field(self.state, -2, k.validate()?.name())?; } let metatable_index = ffi::lua_absindex(self.state, -1); let mut extra_tables_count = 0; let mut field_getters_index = None; let field_getters_nrec = fields.field_getters.len(); if field_getters_nrec > 0 { push_table(self.state, 0, field_getters_nrec as c_int)?; for (k, m) in fields.field_getters { self.push_value(Value::Function(self.create_callback(m)?))?; rawset_field(self.state, -2, &k)?; } field_getters_index = Some(ffi::lua_absindex(self.state, -1)); extra_tables_count += 1; } let mut field_setters_index = None; let field_setters_nrec = fields.field_setters.len(); if field_setters_nrec > 0 { push_table(self.state, 0, field_setters_nrec as c_int)?; for (k, m) in fields.field_setters { self.push_value(Value::Function(self.create_callback(m)?))?; rawset_field(self.state, -2, &k)?; } field_setters_index = Some(ffi::lua_absindex(self.state, -1)); extra_tables_count += 1; } let mut methods_index = None; let methods_nrec = methods.methods.len(); #[cfg(feature = "async")] let methods_nrec = methods_nrec + methods.async_methods.len(); if methods_nrec > 0 { push_table(self.state, 0, methods_nrec as c_int)?; for (k, m) in methods.methods { self.push_value(Value::Function(self.create_callback(m)?))?; rawset_field(self.state, -2, &k)?; } #[cfg(feature = "async")] for (k, m) in methods.async_methods { self.push_value(Value::Function(self.create_async_callback(m)?))?; rawset_field(self.state, -2, &k)?; } methods_index = Some(ffi::lua_absindex(self.state, -1)); extra_tables_count += 1; } init_userdata_metatable::>( self.state, metatable_index, field_getters_index, field_setters_index, methods_index, )?; // Pop extra tables to get metatable on top of the stack ffi::lua_pop(self.state, extra_tables_count); let mt_ptr = ffi::lua_topointer(self.state, -1); ffi::lua_pushvalue(self.state, -1); let id = protect_lua!(self.state, 1, 0, |state| { ffi::luaL_ref(state, ffi::LUA_REGISTRYINDEX) })?; extra.registered_userdata.insert(type_id, id); extra.registered_userdata_mt.insert(mt_ptr, Some(type_id)); Ok(()) } pub(crate) unsafe fn register_userdata_metatable( &self, ptr: *const c_void, type_id: Option, ) { let extra = &mut *self.extra.get(); extra.registered_userdata_mt.insert(ptr, type_id); } pub(crate) unsafe fn deregister_userdata_metatable(&self, ptr: *const c_void) { (*self.extra.get()).registered_userdata_mt.remove(&ptr); } // Pushes a LuaRef value onto the stack, checking that it's a registered // and not destructed UserData. // Uses 2 stack spaces, does not call checkstack. pub(crate) unsafe fn push_userdata_ref(&self, lref: &LuaRef) -> Result> { self.push_ref(lref); if ffi::lua_getmetatable(self.state, -1) == 0 { return Err(Error::UserDataTypeMismatch); } let mt_ptr = ffi::lua_topointer(self.state, -1); ffi::lua_pop(self.state, 1); let extra = &*self.extra.get(); match extra.registered_userdata_mt.get(&mt_ptr) { Some(&type_id) if type_id == Some(TypeId::of::()) => { Err(Error::UserDataDestructed) } Some(&type_id) => Ok(type_id), None => Err(Error::UserDataTypeMismatch), } } #[inline] unsafe fn get_userdata_ref(&self) -> Result> { (*get_userdata::>(self.state, -1)).try_borrow() } #[inline] unsafe fn get_userdata_mut(&self) -> Result> { (*get_userdata::>(self.state, -1)).try_borrow_mut() } // Creates a Function out of a Callback containing a 'static Fn. This is safe ONLY because the // Fn is 'static, otherwise it could capture 'callback arguments improperly. Without ATCs, we // cannot easily deal with the "correct" callback type of: // // Box Fn(&'lua Lua, MultiValue<'lua>) -> Result>)> // // So we instead use a caller provided lifetime, which without the 'static requirement would be // unsafe. pub(crate) fn create_callback<'lua, 'callback>( &'lua self, func: Callback<'callback, 'static>, ) -> Result> where 'lua: 'callback, { unsafe extern "C" fn call_callback(state: *mut ffi::lua_State) -> c_int { let extra = match ffi::lua_type(state, ffi::lua_upvalueindex(1)) { ffi::LUA_TUSERDATA => { let upvalue = get_userdata::(state, ffi::lua_upvalueindex(1)); (*upvalue).lua.extra.get() } _ => ptr::null_mut(), }; callback_error_ext(state, extra, |nargs| { let upvalue_idx = ffi::lua_upvalueindex(1); if ffi::lua_type(state, upvalue_idx) == ffi::LUA_TNIL { return Err(Error::CallbackDestructed); } let upvalue = get_userdata::(state, upvalue_idx); if nargs < ffi::LUA_MINSTACK { check_stack(state, ffi::LUA_MINSTACK - nargs)?; } let mut lua = (*upvalue).lua.clone(); lua.state = state; let mut args = MultiValue::new_or_cached(&lua); args.reserve(nargs as usize); for _ in 0..nargs { args.push_front(lua.pop_value()); } let mut results = ((*upvalue).func)(&lua, args)?; let nresults = results.len() as c_int; check_stack(state, nresults)?; for r in results.drain_all() { lua.push_value(r)?; } lua.cache_multivalue(results); Ok(nresults) }) } unsafe { let _sg = StackGuard::new(self.state); check_stack(self.state, 4)?; let lua = self.clone(); let func = mem::transmute(func); push_gc_userdata(self.state, CallbackUpvalue { lua, func })?; protect_lua!(self.state, 1, 1, fn(state) { ffi::lua_pushcclosure(state, call_callback, 1); })?; Ok(Function(self.pop_ref())) } } #[cfg(feature = "async")] pub(crate) fn create_async_callback<'lua, 'callback>( &'lua self, func: AsyncCallback<'callback, 'static>, ) -> Result> where 'lua: 'callback, { #[cfg(any( feature = "lua54", feature = "lua53", feature = "lua52", feature = "luau" ))] unsafe { let libs = (*self.extra.get()).libs; if !libs.contains(StdLib::COROUTINE) { self.load_from_std_lib(StdLib::COROUTINE)?; } } struct StateGuard(*mut Lua, *mut ffi::lua_State); impl StateGuard { unsafe fn new(lua: *mut Lua, state: *mut ffi::lua_State) -> Self { let orig_state = (*lua).state; (*lua).state = state; Self(lua, orig_state) } } impl Drop for StateGuard { fn drop(&mut self) { unsafe { (*self.0).state = self.1 } } } unsafe extern "C" fn call_callback(state: *mut ffi::lua_State) -> c_int { let extra = match ffi::lua_type(state, ffi::lua_upvalueindex(1)) { ffi::LUA_TUSERDATA => { let upvalue = get_userdata::(state, ffi::lua_upvalueindex(1)); (*upvalue).lua.extra.get() } _ => ptr::null_mut(), }; callback_error_ext(state, extra, |nargs| { let upvalue_idx = ffi::lua_upvalueindex(1); if ffi::lua_type(state, upvalue_idx) == ffi::LUA_TNIL { return Err(Error::CallbackDestructed); } let upvalue = get_userdata::(state, upvalue_idx); if nargs < ffi::LUA_MINSTACK { check_stack(state, ffi::LUA_MINSTACK - nargs)?; } let lua = &mut (*upvalue).lua; let _guard = StateGuard::new(lua, state); let mut args = MultiValue::new_or_cached(lua); args.reserve(nargs as usize); for _ in 0..nargs { args.push_front(lua.pop_value()); } let fut = ((*upvalue).func)(lua, args); let lua = lua.clone(); push_gc_userdata(state, AsyncPollUpvalue { lua, fut })?; protect_lua!(state, 1, 1, fn(state) { ffi::lua_pushcclosure(state, poll_future, 1); })?; Ok(1) }) } unsafe extern "C" fn poll_future(state: *mut ffi::lua_State) -> c_int { let extra = match ffi::lua_type(state, ffi::lua_upvalueindex(1)) { ffi::LUA_TUSERDATA => { let upvalue = get_userdata::(state, ffi::lua_upvalueindex(1)); (*upvalue).lua.extra.get() } _ => ptr::null_mut(), }; callback_error_ext(state, extra, |nargs| { let upvalue_idx = ffi::lua_upvalueindex(1); if ffi::lua_type(state, upvalue_idx) == ffi::LUA_TNIL { return Err(Error::CallbackDestructed); } let upvalue = get_userdata::(state, upvalue_idx); if nargs < ffi::LUA_MINSTACK { check_stack(state, ffi::LUA_MINSTACK - nargs)?; } let lua = &mut (*upvalue).lua; lua.state = state; // Try to get an outer poll waker let waker = lua.waker().unwrap_or_else(noop_waker); let mut ctx = Context::from_waker(&waker); let fut = &mut (*upvalue).fut; match fut.as_mut().poll(&mut ctx) { Poll::Pending => { check_stack(state, 1)?; ffi::lua_pushboolean(state, 0); Ok(1) } Poll::Ready(results) => { let results = results?; let nresults = results.len() as Integer; let results = lua.create_sequence_from(results)?; check_stack(state, 3)?; ffi::lua_pushboolean(state, 1); lua.push_value(Value::Table(results))?; lua.push_value(Value::Integer(nresults))?; Ok(3) } } }) } let get_poll = unsafe { let _sg = StackGuard::new(self.state); check_stack(self.state, 4)?; let lua = self.clone(); let func = mem::transmute(func); push_gc_userdata(self.state, AsyncCallbackUpvalue { lua, func })?; protect_lua!(self.state, 1, 1, fn(state) { ffi::lua_pushcclosure(state, call_callback, 1); })?; Function(self.pop_ref()) }; unsafe extern "C" fn unpack(state: *mut ffi::lua_State) -> c_int { let len = ffi::lua_tointeger(state, 2); ffi::luaL_checkstack(state, len as c_int, ptr::null()); for i in 1..=len { ffi::lua_rawgeti(state, 1, i); } len as c_int } let coroutine = self.globals().get::<_, Table>("coroutine")?; let env = self.create_table_with_capacity(0, 4)?; env.set("get_poll", get_poll)?; env.set("yield", coroutine.get::<_, Function>("yield")?)?; unsafe { env.set("unpack", self.create_c_function(unpack)?)?; } env.set("pending", { LightUserData(&ASYNC_POLL_PENDING as *const u8 as *mut c_void) })?; // We set `poll` variable in the env table to be able to destroy upvalues self.load( r#" poll = get_poll(...) local poll, pending, yield, unpack = poll, pending, yield, unpack while true do local ready, res, nres = poll() if ready then return unpack(res, nres) end yield(pending) end "#, ) .set_name("_mlua_async_poll")? .set_environment(env)? .into_function() } #[cfg(feature = "async")] #[inline] pub(crate) unsafe fn waker(&self) -> Option { let extra = &*self.extra.get(); (*get_userdata::>(extra.ref_thread, extra.ref_waker_idx)).clone() } #[cfg(feature = "async")] #[inline] pub(crate) unsafe fn set_waker(&self, waker: Option) -> Option { let extra = &*self.extra.get(); let waker_slot = &mut *get_userdata::>(extra.ref_thread, extra.ref_waker_idx); match waker { Some(waker) => waker_slot.replace(waker), None => waker_slot.take(), } } pub(crate) unsafe fn make_userdata(&self, data: UserDataCell) -> Result where T: 'static + UserData, { let _sg = StackGuard::new(self.state); check_stack(self.state, 3)?; // We push metatable first to ensure having correct metatable with `__gc` method ffi::lua_pushnil(self.state); self.push_userdata_metatable::()?; #[cfg(not(feature = "lua54"))] push_userdata(self.state, data)?; #[cfg(feature = "lua54")] push_userdata_uv(self.state, data, USER_VALUE_MAXSLOT as c_int)?; ffi::lua_replace(self.state, -3); ffi::lua_setmetatable(self.state, -2); // Set empty environment for Lua 5.1 #[cfg(any(feature = "lua51", feature = "luajit"))] protect_lua!(self.state, 1, 1, fn(state) { ffi::lua_newtable(state); ffi::lua_setuservalue(state, -2); })?; Ok(AnyUserData(self.pop_ref())) } #[inline] pub(crate) fn clone(&self) -> Self { Lua { state: self.state, main_state: self.main_state, extra: Arc::clone(&self.extra), ephemeral: true, safe: self.safe, _no_ref_unwind_safe: PhantomData, } } #[cfg(not(feature = "luau"))] fn disable_c_modules(&self) -> Result<()> { let package: Table = self.globals().get("package")?; package.set( "loadlib", self.create_function(|_, ()| -> Result<()> { Err(Error::SafetyError( "package.loadlib is disabled in safe mode".to_string(), )) })?, )?; #[cfg(any(feature = "lua54", feature = "lua53", feature = "lua52"))] let searchers: Table = package.get("searchers")?; #[cfg(any(feature = "lua51", feature = "luajit"))] let searchers: Table = package.get("loaders")?; let loader = self.create_function(|_, ()| Ok("\n\tcan't load C modules in safe mode"))?; // The third and fourth searchers looks for a loader as a C library searchers.raw_set(3, loader.clone())?; searchers.raw_remove(4)?; Ok(()) } #[cfg(feature = "luau")] unsafe fn prepare_luau_state(&self) -> Result<()> { use std::ffi::CStr; // Since Luau has some missing standard function, we re-implement them here // They are: collectgarbage, loadstring, require unsafe extern "C" fn lua_collectgarbage(state: *mut ffi::lua_State) -> c_int { let option = ffi::luaL_optstring(state, 1, cstr!("collect")); let option = CStr::from_ptr(option); match option.to_str() { Ok("collect") => { ffi::lua_gc(state, ffi::LUA_GCCOLLECT, 0); return 0; } Ok("count") => { let n = ffi::lua_gc(state, ffi::LUA_GCCOUNT, 0); ffi::lua_pushnumber(state, n as ffi::lua_Number); return 1; } // TODO: More variants _ => ffi::luaL_error( state, cstr!("collectgarbage must be called with 'count' or 'collect'"), ), } } self.globals().raw_set( "collectgarbage", self.create_c_function(lua_collectgarbage)?, )?; Ok(()) } pub(crate) unsafe fn make_from_ptr(state: *mut ffi::lua_State) -> Option { let _sg = StackGuard::new(state); assert_stack(state, 1); let extra_key = &EXTRA_REGISTRY_KEY as *const u8 as *const c_void; if ffi::lua_rawgetp(state, ffi::LUA_REGISTRYINDEX, extra_key) != ffi::LUA_TUSERDATA { return None; } let extra_ptr = ffi::lua_touserdata(state, -1) as *mut Arc>; let extra = Arc::clone(&*extra_ptr); ffi::lua_pop(state, 1); let safe = (*extra.get()).safe; Some(Lua { state, main_state: get_main_state(state), extra, ephemeral: true, safe, _no_ref_unwind_safe: PhantomData, }) } #[inline] pub(crate) fn new_or_cached_multivalue(&self) -> MultiValue { unsafe { let extra = &mut *self.extra.get(); extra.multivalue_cache.pop().unwrap_or_default() } } #[inline] pub(crate) fn cache_multivalue(&self, mut multivalue: MultiValue) { unsafe { let extra = &mut *self.extra.get(); if extra.multivalue_cache.len() < MULTIVALUE_CACHE_SIZE { multivalue.clear(); extra.multivalue_cache.push(mem::transmute(multivalue)); } } } } /// Returned from [`Lua::load`] and is used to finalize loading and executing Lua main chunks. /// /// [`Lua::load`]: crate::Lua::load #[must_use = "`Chunk`s do nothing unless one of `exec`, `eval`, `call`, or `into_function` are called on them"] pub struct Chunk<'lua, 'a> { lua: &'lua Lua, source: &'a [u8], name: Option, env: Result>>, mode: Option, } /// Represents chunk mode (text or binary). #[derive(Clone, Copy, Debug)] pub enum ChunkMode { Text, Binary, } /// Trait for types [loadable by Lua] and convertible to a [`Chunk`] /// /// [loadable by Lua]: https://www.lua.org/manual/5.4/manual.html#3.3.2 /// [`Chunk`]: crate::Chunk pub trait AsChunk<'lua> { /// Returns chunk data (can be text or binary) fn source(&self) -> &[u8]; /// Returns optional chunk name fn name(&self) -> Option { None } /// Returns optional chunk [environment] /// /// [environment]: https://www.lua.org/manual/5.4/manual.html#2.2 fn env(&self, _lua: &'lua Lua) -> Result>> { Ok(None) } /// Returns optional chunk mode (text or binary) fn mode(&self) -> Option { None } } impl<'lua, 'a> Chunk<'lua, 'a> { /// Sets the name of this chunk, which results in more informative error traces. pub fn set_name + ?Sized>(mut self, name: &S) -> Result> { let name = CString::new(name.as_ref().to_vec()).map_err(|e| Error::ToLuaConversionError { from: "&str", to: "string", message: Some(e.to_string()), })?; self.name = Some(name); Ok(self) } /// Sets the first upvalue (`_ENV`) of the loaded chunk to the given value. /// /// Lua main chunks always have exactly one upvalue, and this upvalue is used as the `_ENV` /// variable inside the chunk. By default this value is set to the global environment. /// /// Calling this method changes the `_ENV` upvalue to the value provided, and variables inside /// the chunk will refer to the given environment rather than the global one. /// /// All global variables (including the standard library!) are looked up in `_ENV`, so it may be /// necessary to populate the environment in order for scripts using custom environments to be /// useful. pub fn set_environment>(mut self, env: V) -> Result> { // Prefer to propagate errors here and wrap to `Ok` self.env = Ok(Some(env.to_lua(self.lua)?)); Ok(self) } /// Sets whether the chunk is text or binary (autodetected by default). /// /// Lua does not check the consistency of binary chunks, therefore this mode is allowed only /// for instances created with [`Lua::unsafe_new`]. /// /// [`Lua::unsafe_new`]: crate::Lua::unsafe_new pub fn set_mode(mut self, mode: ChunkMode) -> Chunk<'lua, 'a> { self.mode = Some(mode); self } /// Execute this chunk of code. /// /// This is equivalent to calling the chunk function with no arguments and no return values. pub fn exec(self) -> Result<()> { self.call(())?; Ok(()) } /// Asynchronously execute this chunk of code. /// /// See [`exec`] for more details. /// /// Requires `feature = "async"` /// /// [`exec`]: #method.exec #[cfg(feature = "async")] #[cfg_attr(docsrs, doc(cfg(feature = "async")))] pub fn exec_async<'fut>(self) -> LocalBoxFuture<'fut, Result<()>> where 'lua: 'fut, { self.call_async(()) } /// Evaluate the chunk as either an expression or block. /// /// If the chunk can be parsed as an expression, this loads and executes the chunk and returns /// the value that it evaluates to. Otherwise, the chunk is interpreted as a block as normal, /// and this is equivalent to calling `exec`. pub fn eval>(self) -> Result { // Bytecode is always interpreted as a statement. // For source code, first try interpreting the lua as an expression by adding // "return", then as a statement. This is the same thing the // actual lua repl does. if self.source[0] < b'\n' { self.call(()) } else if let Ok(function) = self.lua.load_chunk( &self.expression_source(), self.name.as_ref(), self.env()?, self.mode, ) { function.call(()) } else { self.call(()) } } /// Asynchronously evaluate the chunk as either an expression or block. /// /// See [`eval`] for more details. /// /// Requires `feature = "async"` /// /// [`eval`]: #method.eval #[cfg(feature = "async")] #[cfg_attr(docsrs, doc(cfg(feature = "async")))] pub fn eval_async<'fut, R>(self) -> LocalBoxFuture<'fut, Result> where 'lua: 'fut, R: FromLuaMulti<'lua> + 'fut, { if self.source[0] < b'\n' { self.call_async(()) } else if let Ok(function) = self.lua.load_chunk( &self.expression_source(), self.name.as_ref(), match self.env() { Ok(env) => env, Err(e) => return Box::pin(future::err(e)), }, self.mode, ) { function.call_async(()) } else { self.call_async(()) } } /// Load the chunk function and call it with the given arguments. /// /// This is equivalent to `into_function` and calling the resulting function. pub fn call, R: FromLuaMulti<'lua>>(self, args: A) -> Result { self.into_function()?.call(args) } /// Load the chunk function and asynchronously call it with the given arguments. /// /// See [`call`] for more details. /// /// Requires `feature = "async"` /// /// [`call`]: #method.call #[cfg(feature = "async")] #[cfg_attr(docsrs, doc(cfg(feature = "async")))] pub fn call_async<'fut, A, R>(self, args: A) -> LocalBoxFuture<'fut, Result> where 'lua: 'fut, A: ToLuaMulti<'lua>, R: FromLuaMulti<'lua> + 'fut, { match self.into_function() { Ok(func) => func.call_async(args), Err(e) => Box::pin(future::err(e)), } } /// Load this chunk into a regular `Function`. /// /// This simply compiles the chunk without actually executing it. pub fn into_function(self) -> Result> { self.lua .load_chunk(self.source, self.name.as_ref(), self.env()?, self.mode) } fn env(&self) -> Result>> { self.env.clone() } fn expression_source(&self) -> Vec { let mut buf = Vec::with_capacity(b"return ".len() + self.source.len()); buf.extend(b"return "); buf.extend(self.source); buf } } impl<'lua, T: AsRef<[u8]> + ?Sized> AsChunk<'lua> for T { fn source(&self) -> &[u8] { self.as_ref() } } // Creates required entries in the metatable cache (see `util::METATABLE_CACHE`) pub(crate) fn init_metatable_cache(cache: &mut FxHashMap) { cache.insert(TypeId::of::>>(), 0); cache.insert(TypeId::of::(), 0); cache.insert(TypeId::of::(), 0); #[cfg(feature = "async")] { cache.insert(TypeId::of::(), 0); cache.insert(TypeId::of::(), 0); cache.insert(TypeId::of::(), 0); cache.insert(TypeId::of::>(), 0); } } // An optimized version of `callback_error` that does not allocate `WrappedFailure` userdata // and instead reuses unsed and cached values from previous calls (or allocates new). // It requires `get_extra` function to return `ExtraData` value. unsafe fn callback_error_ext(state: *mut ffi::lua_State, extra: *mut ExtraData, f: F) -> R where F: FnOnce(c_int) -> Result, { if extra.is_null() { return callback_error(state, f); } let extra = &mut *extra; let nargs = ffi::lua_gettop(state); // We need 2 extra stack spaces to store preallocated memory and error/panic metatable. let extra_stack = if nargs < 2 { 2 - nargs } else { 1 }; ffi::luaL_checkstack( state, extra_stack, cstr!("not enough stack space for callback error handling"), ); enum PreallocatedFailure { New(*mut WrappedFailure), Cached(i32), } // We cannot shadow Rust errors with Lua ones, so we need to obtain pre-allocated memory // to store a wrapped failure (error or panic) *before* we proceed. let prealloc_failure = match extra.wrapped_failures_cache.pop() { Some(index) => PreallocatedFailure::Cached(index), None => { let ud = WrappedFailure::new_userdata(state); ffi::lua_rotate(state, 1, 1); PreallocatedFailure::New(ud) } }; let mut get_wrapped_failure = || match prealloc_failure { PreallocatedFailure::New(ud) => { ffi::lua_settop(state, 1); ud } PreallocatedFailure::Cached(index) => { ffi::lua_settop(state, 0); ffi::lua_pushvalue(extra.ref_thread, index); ffi::lua_xmove(extra.ref_thread, state, 1); ffi::lua_pushnil(extra.ref_thread); ffi::lua_replace(extra.ref_thread, index); extra.ref_free.push(index); ffi::lua_touserdata(state, -1) as *mut WrappedFailure } }; match catch_unwind(AssertUnwindSafe(|| f(nargs))) { Ok(Ok(r)) => { // Return unused WrappedFailure to the cache match prealloc_failure { PreallocatedFailure::New(_) if extra.wrapped_failures_cache.len() < WRAPPED_FAILURES_CACHE_SIZE => { ffi::lua_rotate(state, 1, -1); ffi::lua_xmove(state, extra.ref_thread, 1); let index = ref_stack_pop(extra); extra.wrapped_failures_cache.push(index); } PreallocatedFailure::New(_) => { ffi::lua_remove(state, 1); } PreallocatedFailure::Cached(index) if extra.wrapped_failures_cache.len() < WRAPPED_FAILURES_CACHE_SIZE => { extra.wrapped_failures_cache.push(index); } PreallocatedFailure::Cached(index) => { ffi::lua_pushnil(extra.ref_thread); ffi::lua_replace(extra.ref_thread, index); extra.ref_free.push(index); } } r } Ok(Err(err)) => { let wrapped_error = get_wrapped_failure(); // Build `CallbackError` with traceback let traceback = if ffi::lua_checkstack(state, ffi::LUA_TRACEBACK_STACK) != 0 { ffi::luaL_traceback(state, state, ptr::null(), 0); let traceback = util::to_string(state, -1); ffi::lua_pop(state, 1); traceback } else { "".to_string() }; let cause = Arc::new(err); ptr::write( wrapped_error, WrappedFailure::Error(Error::CallbackError { traceback, cause }), ); get_gc_metatable::(state); ffi::lua_setmetatable(state, -2); ffi::lua_error(state) } Err(p) => { let wrapped_panic = get_wrapped_failure(); ptr::write(wrapped_panic, WrappedFailure::Panic(Some(p))); get_gc_metatable::(state); ffi::lua_setmetatable(state, -2); ffi::lua_error(state) } } } // Uses 3 stack spaces unsafe fn load_from_std_lib(state: *mut ffi::lua_State, libs: StdLib) -> Result<()> { #[inline(always)] pub unsafe fn requiref + ?Sized>( state: *mut ffi::lua_State, modname: &S, openf: ffi::lua_CFunction, glb: c_int, ) -> Result<()> { let modname = mlua_expect!(CString::new(modname.as_ref()), "modname contains nil bytes"); protect_lua!(state, 0, 1, |state| { ffi::luaL_requiref(state, modname.as_ptr() as *const c_char, openf, glb) }) } #[cfg(feature = "luajit")] struct GcGuard(*mut ffi::lua_State); #[cfg(feature = "luajit")] impl GcGuard { fn new(state: *mut ffi::lua_State) -> Self { // Stop collector during library initialization unsafe { ffi::lua_gc(state, ffi::LUA_GCSTOP, 0) }; GcGuard(state) } } #[cfg(feature = "luajit")] impl Drop for GcGuard { fn drop(&mut self) { unsafe { ffi::lua_gc(self.0, ffi::LUA_GCRESTART, -1) }; } } // Stop collector during library initialization #[cfg(feature = "luajit")] let _gc_guard = GcGuard::new(state); #[cfg(any( feature = "lua54", feature = "lua53", feature = "lua52", feature = "luau" ))] { if libs.contains(StdLib::COROUTINE) { requiref(state, ffi::LUA_COLIBNAME, ffi::luaopen_coroutine, 1)?; ffi::lua_pop(state, 1); } } if libs.contains(StdLib::TABLE) { requiref(state, ffi::LUA_TABLIBNAME, ffi::luaopen_table, 1)?; ffi::lua_pop(state, 1); } #[cfg(not(feature = "luau"))] if libs.contains(StdLib::IO) { requiref(state, ffi::LUA_IOLIBNAME, ffi::luaopen_io, 1)?; ffi::lua_pop(state, 1); } if libs.contains(StdLib::OS) { requiref(state, ffi::LUA_OSLIBNAME, ffi::luaopen_os, 1)?; ffi::lua_pop(state, 1); } if libs.contains(StdLib::STRING) { requiref(state, ffi::LUA_STRLIBNAME, ffi::luaopen_string, 1)?; ffi::lua_pop(state, 1); } #[cfg(any(feature = "lua54", feature = "lua53", feature = "luau"))] { if libs.contains(StdLib::UTF8) { requiref(state, ffi::LUA_UTF8LIBNAME, ffi::luaopen_utf8, 1)?; ffi::lua_pop(state, 1); } } #[cfg(any(feature = "lua52", feature = "luau"))] { if libs.contains(StdLib::BIT) { requiref(state, ffi::LUA_BITLIBNAME, ffi::luaopen_bit32, 1)?; ffi::lua_pop(state, 1); } } #[cfg(feature = "luajit")] { if libs.contains(StdLib::BIT) { requiref(state, ffi::LUA_BITLIBNAME, ffi::luaopen_bit, 1)?; ffi::lua_pop(state, 1); } } if libs.contains(StdLib::MATH) { requiref(state, ffi::LUA_MATHLIBNAME, ffi::luaopen_math, 1)?; ffi::lua_pop(state, 1); } if libs.contains(StdLib::DEBUG) { requiref(state, ffi::LUA_DBLIBNAME, ffi::luaopen_debug, 1)?; ffi::lua_pop(state, 1); } #[cfg(not(feature = "luau"))] if libs.contains(StdLib::PACKAGE) { requiref(state, ffi::LUA_LOADLIBNAME, ffi::luaopen_package, 1)?; ffi::lua_pop(state, 1); } #[cfg(feature = "luajit")] { if libs.contains(StdLib::JIT) { requiref(state, ffi::LUA_JITLIBNAME, ffi::luaopen_jit, 1)?; ffi::lua_pop(state, 1); } if libs.contains(StdLib::FFI) { requiref(state, ffi::LUA_FFILIBNAME, ffi::luaopen_ffi, 1)?; ffi::lua_pop(state, 1); } } Ok(()) } unsafe fn ref_stack_pop(extra: &mut ExtraData) -> c_int { if let Some(free) = extra.ref_free.pop() { ffi::lua_replace(extra.ref_thread, free); return free; } // Try to grow max stack size if extra.ref_stack_top >= extra.ref_stack_size { let mut inc = extra.ref_stack_size; // Try to double stack size while inc > 0 && ffi::lua_checkstack(extra.ref_thread, inc) == 0 { inc /= 2; } if inc == 0 { // Pop item on top of the stack to avoid stack leaking and successfully run destructors // during unwinding. ffi::lua_pop(extra.ref_thread, 1); let top = extra.ref_stack_top; // It is a user error to create enough references to exhaust the Lua max stack size for // the ref thread. panic!( "cannot create a Lua reference, out of auxiliary stack space (used {} slots)", top ); } extra.ref_stack_size += inc; } extra.ref_stack_top += 1; extra.ref_stack_top } struct StaticUserDataMethods<'lua, T: 'static + UserData> { methods: Vec<(Vec, Callback<'lua, 'static>)>, #[cfg(feature = "async")] async_methods: Vec<(Vec, AsyncCallback<'lua, 'static>)>, meta_methods: Vec<(MetaMethod, Callback<'lua, 'static>)>, #[cfg(feature = "async")] async_meta_methods: Vec<(MetaMethod, AsyncCallback<'lua, 'static>)>, _type: PhantomData, } impl<'lua, T: 'static + UserData> Default for StaticUserDataMethods<'lua, T> { fn default() -> StaticUserDataMethods<'lua, T> { StaticUserDataMethods { methods: Vec::new(), #[cfg(feature = "async")] async_methods: Vec::new(), meta_methods: Vec::new(), #[cfg(feature = "async")] async_meta_methods: Vec::new(), _type: PhantomData, } } } impl<'lua, T: 'static + UserData> UserDataMethods<'lua, T> for StaticUserDataMethods<'lua, T> { fn add_method(&mut self, name: &S, method: M) where S: AsRef<[u8]> + ?Sized, A: FromLuaMulti<'lua>, R: ToLuaMulti<'lua>, M: 'static + MaybeSend + Fn(&'lua Lua, &T, A) -> Result, { self.methods .push((name.as_ref().to_vec(), Self::box_method(method))); } fn add_method_mut(&mut self, name: &S, method: M) where S: AsRef<[u8]> + ?Sized, A: FromLuaMulti<'lua>, R: ToLuaMulti<'lua>, M: 'static + MaybeSend + FnMut(&'lua Lua, &mut T, A) -> Result, { self.methods .push((name.as_ref().to_vec(), Self::box_method_mut(method))); } #[cfg(feature = "async")] fn add_async_method(&mut self, name: &S, method: M) where T: Clone, S: AsRef<[u8]> + ?Sized, A: FromLuaMulti<'lua>, R: ToLuaMulti<'lua>, M: 'static + MaybeSend + Fn(&'lua Lua, T, A) -> MR, MR: 'lua + Future>, { self.async_methods .push((name.as_ref().to_vec(), Self::box_async_method(method))); } fn add_function(&mut self, name: &S, function: F) where S: AsRef<[u8]> + ?Sized, A: FromLuaMulti<'lua>, R: ToLuaMulti<'lua>, F: 'static + MaybeSend + Fn(&'lua Lua, A) -> Result, { self.methods .push((name.as_ref().to_vec(), Self::box_function(function))); } fn add_function_mut(&mut self, name: &S, function: F) where S: AsRef<[u8]> + ?Sized, A: FromLuaMulti<'lua>, R: ToLuaMulti<'lua>, F: 'static + MaybeSend + FnMut(&'lua Lua, A) -> Result, { self.methods .push((name.as_ref().to_vec(), Self::box_function_mut(function))); } #[cfg(feature = "async")] fn add_async_function(&mut self, name: &S, function: F) where S: AsRef<[u8]> + ?Sized, A: FromLuaMulti<'lua>, R: ToLuaMulti<'lua>, F: 'static + MaybeSend + Fn(&'lua Lua, A) -> FR, FR: 'lua + Future>, { self.async_methods .push((name.as_ref().to_vec(), Self::box_async_function(function))); } fn add_meta_method(&mut self, meta: S, method: M) where S: Into, A: FromLuaMulti<'lua>, R: ToLuaMulti<'lua>, M: 'static + MaybeSend + Fn(&'lua Lua, &T, A) -> Result, { self.meta_methods .push((meta.into(), Self::box_method(method))); } fn add_meta_method_mut(&mut self, meta: S, method: M) where S: Into, A: FromLuaMulti<'lua>, R: ToLuaMulti<'lua>, M: 'static + MaybeSend + FnMut(&'lua Lua, &mut T, A) -> Result, { self.meta_methods .push((meta.into(), Self::box_method_mut(method))); } #[cfg(all(feature = "async", not(any(feature = "lua51", feature = "luau"))))] fn add_async_meta_method(&mut self, meta: S, method: M) where T: Clone, S: Into, A: FromLuaMulti<'lua>, R: ToLuaMulti<'lua>, M: 'static + MaybeSend + Fn(&'lua Lua, T, A) -> MR, MR: 'lua + Future>, { self.async_meta_methods .push((meta.into(), Self::box_async_method(method))); } fn add_meta_function(&mut self, meta: S, function: F) where S: Into, A: FromLuaMulti<'lua>, R: ToLuaMulti<'lua>, F: 'static + MaybeSend + Fn(&'lua Lua, A) -> Result, { self.meta_methods .push((meta.into(), Self::box_function(function))); } fn add_meta_function_mut(&mut self, meta: S, function: F) where S: Into, A: FromLuaMulti<'lua>, R: ToLuaMulti<'lua>, F: 'static + MaybeSend + FnMut(&'lua Lua, A) -> Result, { self.meta_methods .push((meta.into(), Self::box_function_mut(function))); } #[cfg(all(feature = "async", not(any(feature = "lua51", feature = "luau"))))] fn add_async_meta_function(&mut self, meta: S, function: F) where S: Into, A: FromLuaMulti<'lua>, R: ToLuaMulti<'lua>, F: 'static + MaybeSend + Fn(&'lua Lua, A) -> FR, FR: 'lua + Future>, { self.async_meta_methods .push((meta.into(), Self::box_async_function(function))); } // Below are internal methods used in generated code fn add_callback(&mut self, name: Vec, callback: Callback<'lua, 'static>) { self.methods.push((name, callback)); } #[cfg(feature = "async")] fn add_async_callback(&mut self, name: Vec, callback: AsyncCallback<'lua, 'static>) { self.async_methods.push((name, callback)); } fn add_meta_callback(&mut self, meta: MetaMethod, callback: Callback<'lua, 'static>) { self.meta_methods.push((meta, callback)); } #[cfg(feature = "async")] fn add_async_meta_callback( &mut self, meta: MetaMethod, callback: AsyncCallback<'lua, 'static>, ) { self.async_meta_methods.push((meta, callback)) } } impl<'lua, T: 'static + UserData> StaticUserDataMethods<'lua, T> { fn box_method(method: M) -> Callback<'lua, 'static> where A: FromLuaMulti<'lua>, R: ToLuaMulti<'lua>, M: 'static + MaybeSend + Fn(&'lua Lua, &T, A) -> Result, { Box::new(move |lua, mut args| { if let Some(front) = args.pop_front() { let userdata = AnyUserData::from_lua(front, lua)?; unsafe { let _sg = StackGuard::new(lua.state); check_stack(lua.state, 2)?; let type_id = lua.push_userdata_ref(&userdata.0)?; match type_id { Some(id) if id == TypeId::of::() => { let ud = lua.get_userdata_ref::()?; method(lua, &ud, A::from_lua_multi(args, lua)?)?.to_lua_multi(lua) } #[cfg(not(feature = "send"))] Some(id) if id == TypeId::of::>>() => { let ud = lua.get_userdata_ref::>>()?; let ud = ud.try_borrow().map_err(|_| Error::UserDataBorrowError)?; method(lua, &ud, A::from_lua_multi(args, lua)?)?.to_lua_multi(lua) } Some(id) if id == TypeId::of::>>() => { let ud = lua.get_userdata_ref::>>()?; let ud = ud.try_lock().map_err(|_| Error::UserDataBorrowError)?; method(lua, &ud, A::from_lua_multi(args, lua)?)?.to_lua_multi(lua) } Some(id) if id == TypeId::of::>>() => { let ud = lua.get_userdata_ref::>>()?; let ud = ud.try_read().map_err(|_| Error::UserDataBorrowError)?; method(lua, &ud, A::from_lua_multi(args, lua)?)?.to_lua_multi(lua) } _ => Err(Error::UserDataTypeMismatch), } } } else { Err(Error::FromLuaConversionError { from: "missing argument", to: "userdata", message: None, }) } }) } fn box_method_mut(method: M) -> Callback<'lua, 'static> where A: FromLuaMulti<'lua>, R: ToLuaMulti<'lua>, M: 'static + MaybeSend + FnMut(&'lua Lua, &mut T, A) -> Result, { let method = RefCell::new(method); Box::new(move |lua, mut args| { if let Some(front) = args.pop_front() { let userdata = AnyUserData::from_lua(front, lua)?; let mut method = method .try_borrow_mut() .map_err(|_| Error::RecursiveMutCallback)?; unsafe { let _sg = StackGuard::new(lua.state); check_stack(lua.state, 2)?; let type_id = lua.push_userdata_ref(&userdata.0)?; match type_id { Some(id) if id == TypeId::of::() => { let mut ud = lua.get_userdata_mut::()?; method(lua, &mut ud, A::from_lua_multi(args, lua)?)?.to_lua_multi(lua) } #[cfg(not(feature = "send"))] Some(id) if id == TypeId::of::>>() => { let ud = lua.get_userdata_mut::>>()?; let mut ud = ud .try_borrow_mut() .map_err(|_| Error::UserDataBorrowMutError)?; method(lua, &mut ud, A::from_lua_multi(args, lua)?)?.to_lua_multi(lua) } Some(id) if id == TypeId::of::>>() => { let ud = lua.get_userdata_mut::>>()?; let mut ud = ud.try_lock().map_err(|_| Error::UserDataBorrowMutError)?; method(lua, &mut ud, A::from_lua_multi(args, lua)?)?.to_lua_multi(lua) } Some(id) if id == TypeId::of::>>() => { let ud = lua.get_userdata_mut::>>()?; let mut ud = ud.try_write().map_err(|_| Error::UserDataBorrowMutError)?; method(lua, &mut ud, A::from_lua_multi(args, lua)?)?.to_lua_multi(lua) } _ => Err(Error::UserDataTypeMismatch), } } } else { Err(Error::FromLuaConversionError { from: "missing argument", to: "userdata", message: None, }) } }) } #[cfg(feature = "async")] fn box_async_method(method: M) -> AsyncCallback<'lua, 'static> where T: Clone, A: FromLuaMulti<'lua>, R: ToLuaMulti<'lua>, M: 'static + MaybeSend + Fn(&'lua Lua, T, A) -> MR, MR: 'lua + Future>, { Box::new(move |lua, mut args| { let fut_res = || { if let Some(front) = args.pop_front() { let userdata = AnyUserData::from_lua(front, lua)?; unsafe { let _sg = StackGuard::new(lua.state); check_stack(lua.state, 2)?; let type_id = lua.push_userdata_ref(&userdata.0)?; match type_id { Some(id) if id == TypeId::of::() => { let ud = lua.get_userdata_ref::()?; Ok(method(lua, ud.clone(), A::from_lua_multi(args, lua)?)) } #[cfg(not(feature = "send"))] Some(id) if id == TypeId::of::>>() => { let ud = lua.get_userdata_ref::>>()?; let ud = ud.try_borrow().map_err(|_| Error::UserDataBorrowError)?; Ok(method(lua, ud.clone(), A::from_lua_multi(args, lua)?)) } Some(id) if id == TypeId::of::>>() => { let ud = lua.get_userdata_ref::>>()?; let ud = ud.try_lock().map_err(|_| Error::UserDataBorrowError)?; Ok(method(lua, ud.clone(), A::from_lua_multi(args, lua)?)) } Some(id) if id == TypeId::of::>>() => { let ud = lua.get_userdata_ref::>>()?; let ud = ud.try_read().map_err(|_| Error::UserDataBorrowError)?; Ok(method(lua, ud.clone(), A::from_lua_multi(args, lua)?)) } _ => Err(Error::UserDataTypeMismatch), } } } else { Err(Error::FromLuaConversionError { from: "missing argument", to: "userdata", message: None, }) } }; match fut_res() { Ok(fut) => Box::pin(fut.and_then(move |ret| future::ready(ret.to_lua_multi(lua)))), Err(e) => Box::pin(future::err(e)), } }) } fn box_function(function: F) -> Callback<'lua, 'static> where A: FromLuaMulti<'lua>, R: ToLuaMulti<'lua>, F: 'static + MaybeSend + Fn(&'lua Lua, A) -> Result, { Box::new(move |lua, args| function(lua, A::from_lua_multi(args, lua)?)?.to_lua_multi(lua)) } fn box_function_mut(function: F) -> Callback<'lua, 'static> where A: FromLuaMulti<'lua>, R: ToLuaMulti<'lua>, F: 'static + MaybeSend + FnMut(&'lua Lua, A) -> Result, { let function = RefCell::new(function); Box::new(move |lua, args| { let function = &mut *function .try_borrow_mut() .map_err(|_| Error::RecursiveMutCallback)?; function(lua, A::from_lua_multi(args, lua)?)?.to_lua_multi(lua) }) } #[cfg(feature = "async")] fn box_async_function(function: F) -> AsyncCallback<'lua, 'static> where A: FromLuaMulti<'lua>, R: ToLuaMulti<'lua>, F: 'static + MaybeSend + Fn(&'lua Lua, A) -> FR, FR: 'lua + Future>, { Box::new(move |lua, args| { let args = match A::from_lua_multi(args, lua) { Ok(args) => args, Err(e) => return Box::pin(future::err(e)), }; Box::pin(function(lua, args).and_then(move |ret| future::ready(ret.to_lua_multi(lua)))) }) } } struct StaticUserDataFields<'lua, T: 'static + UserData> { field_getters: Vec<(Vec, Callback<'lua, 'static>)>, field_setters: Vec<(Vec, Callback<'lua, 'static>)>, #[allow(clippy::type_complexity)] meta_fields: Vec<( MetaMethod, Box Result> + 'static>, )>, _type: PhantomData, } impl<'lua, T: 'static + UserData> Default for StaticUserDataFields<'lua, T> { fn default() -> StaticUserDataFields<'lua, T> { StaticUserDataFields { field_getters: Vec::new(), field_setters: Vec::new(), meta_fields: Vec::new(), _type: PhantomData, } } } impl<'lua, T: 'static + UserData> UserDataFields<'lua, T> for StaticUserDataFields<'lua, T> { fn add_field_method_get(&mut self, name: &S, method: M) where S: AsRef<[u8]> + ?Sized, R: ToLua<'lua>, M: 'static + MaybeSend + Fn(&'lua Lua, &T) -> Result, { self.field_getters.push(( name.as_ref().to_vec(), StaticUserDataMethods::box_method(move |lua, data, ()| method(lua, data)), )); } fn add_field_method_set(&mut self, name: &S, method: M) where S: AsRef<[u8]> + ?Sized, A: FromLua<'lua>, M: 'static + MaybeSend + FnMut(&'lua Lua, &mut T, A) -> Result<()>, { self.field_setters.push(( name.as_ref().to_vec(), StaticUserDataMethods::box_method_mut(method), )); } fn add_field_function_get(&mut self, name: &S, function: F) where S: AsRef<[u8]> + ?Sized, R: ToLua<'lua>, F: 'static + MaybeSend + Fn(&'lua Lua, AnyUserData<'lua>) -> Result, { self.field_getters.push(( name.as_ref().to_vec(), StaticUserDataMethods::::box_function(function), )); } fn add_field_function_set(&mut self, name: &S, mut function: F) where S: AsRef<[u8]> + ?Sized, A: FromLua<'lua>, F: 'static + MaybeSend + FnMut(&'lua Lua, AnyUserData<'lua>, A) -> Result<()>, { self.field_setters.push(( name.as_ref().to_vec(), StaticUserDataMethods::::box_function_mut(move |lua, (data, val)| { function(lua, data, val) }), )); } fn add_meta_field_with(&mut self, meta: S, f: F) where S: Into, R: ToLua<'lua>, F: 'static + MaybeSend + Fn(&'lua Lua) -> Result, { let meta = meta.into(); self.meta_fields.push(( meta.clone(), Box::new(move |lua| { let value = f(lua)?.to_lua(lua)?; if meta == MetaMethod::Index || meta == MetaMethod::NewIndex { match value { Value::Nil | Value::Table(_) | Value::Function(_) => {} _ => { return Err(Error::MetaMethodTypeError { method: meta.to_string(), type_name: value.type_name(), message: Some("expected nil, table or function".to_string()), }) } } } Ok(value) }), )); } // Below are internal methods fn add_field_getter(&mut self, name: Vec, callback: Callback<'lua, 'static>) { self.field_getters.push((name, callback)); } fn add_field_setter(&mut self, name: Vec, callback: Callback<'lua, 'static>) { self.field_setters.push((name, callback)); } } macro_rules! lua_userdata_impl { ($type:ty) => { impl UserData for $type { fn add_fields<'lua, F: UserDataFields<'lua, Self>>(fields: &mut F) { let mut orig_fields = StaticUserDataFields::default(); T::add_fields(&mut orig_fields); for (name, callback) in orig_fields.field_getters { fields.add_field_getter(name, callback); } for (name, callback) in orig_fields.field_setters { fields.add_field_setter(name, callback); } } fn add_methods<'lua, M: UserDataMethods<'lua, Self>>(methods: &mut M) { let mut orig_methods = StaticUserDataMethods::default(); T::add_methods(&mut orig_methods); for (name, callback) in orig_methods.methods { methods.add_callback(name, callback); } #[cfg(feature = "async")] for (name, callback) in orig_methods.async_methods { methods.add_async_callback(name, callback); } for (meta, callback) in orig_methods.meta_methods { methods.add_meta_callback(meta, callback); } #[cfg(feature = "async")] for (meta, callback) in orig_methods.async_meta_methods { methods.add_async_meta_callback(meta, callback); } } } }; } #[cfg(not(feature = "send"))] lua_userdata_impl!(Rc>); lua_userdata_impl!(Arc>); lua_userdata_impl!(Arc>);