mlua/src/thread.rs

412 lines
12 KiB
Rust
Raw Normal View History

use std::cmp;
use std::os::raw::c_int;
use crate::error::{Error, Result};
use crate::ffi;
use crate::types::LuaRef;
use crate::util::{check_stack, error_traceback, pop_error, StackGuard};
use crate::value::{FromLuaMulti, ToLuaMulti};
2022-03-23 16:13:48 -05:00
#[cfg(any(
feature = "lua54",
all(feature = "luajit", feature = "vendored"),
feature = "luau",
))]
2021-05-05 05:11:32 -05:00
use crate::function::Function;
#[cfg(feature = "async")]
use {
crate::{
lua::{Lua, ASYNC_POLL_PENDING},
value::{MultiValue, Value},
},
futures_core::{future::Future, stream::Stream},
std::{
cell::RefCell,
marker::PhantomData,
os::raw::c_void,
pin::Pin,
task::{Context, Poll, Waker},
},
};
/// Status of a Lua thread (or coroutine).
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
pub enum ThreadStatus {
/// The thread was just created, or is suspended because it has called `coroutine.yield`.
///
/// If a thread is in this state, it can be resumed by calling [`Thread::resume`].
///
/// [`Thread::resume`]: crate::Thread::resume
Resumable,
/// Either the thread has finished executing, or the thread is currently running.
Unresumable,
/// The thread has raised a Lua error during execution.
Error,
}
/// Handle to an internal Lua thread (or coroutine).
#[derive(Clone, Debug)]
pub struct Thread<'lua>(pub(crate) LuaRef<'lua>);
2020-04-19 19:52:01 -05:00
/// Thread (coroutine) representation as an async [`Future`] or [`Stream`].
///
2020-05-13 20:12:22 -05:00
/// Requires `feature = "async"`
///
/// [`Future`]: futures_core::future::Future
/// [`Stream`]: futures_core::stream::Stream
#[cfg(feature = "async")]
2020-12-29 19:43:00 -06:00
#[cfg_attr(docsrs, doc(cfg(feature = "async")))]
#[derive(Debug)]
pub struct AsyncThread<'lua, R> {
thread: Thread<'lua>,
args0: RefCell<Option<Result<MultiValue<'lua>>>>,
ret: PhantomData<R>,
recycle: bool,
}
impl<'lua> Thread<'lua> {
/// Resumes execution of this thread.
///
/// Equivalent to `coroutine.resume`.
///
/// Passes `args` as arguments to the thread. If the coroutine has called `coroutine.yield`, it
/// will return these arguments. Otherwise, the coroutine wasn't yet started, so the arguments
/// are passed to its main function.
///
/// If the thread is no longer in `Active` state (meaning it has finished execution or
/// encountered an error), this will return `Err(CoroutineInactive)`, otherwise will return `Ok`
/// as follows:
///
/// If the thread calls `coroutine.yield`, returns the values passed to `yield`. If the thread
/// `return`s values from its main function, returns those.
///
/// # Examples
///
/// ```
2019-10-17 10:59:33 -05:00
/// # use mlua::{Error, Lua, Result, Thread};
/// # fn main() -> Result<()> {
2019-10-17 10:59:33 -05:00
/// # let lua = Lua::new();
/// let thread: Thread = lua.load(r#"
/// coroutine.create(function(arg)
/// assert(arg == 42)
/// local yieldarg = coroutine.yield(123)
/// assert(yieldarg == 43)
/// return 987
/// end)
2019-10-17 10:59:33 -05:00
/// "#).eval()?;
///
2019-10-17 10:59:33 -05:00
/// assert_eq!(thread.resume::<_, u32>(42)?, 123);
/// assert_eq!(thread.resume::<_, u32>(43)?, 987);
///
/// // The coroutine has now returned, so `resume` will fail
/// match thread.resume::<_, u32>(()) {
/// Err(Error::CoroutineInactive) => {},
/// unexpected => panic!("unexpected result {:?}", unexpected),
/// }
2019-10-17 10:59:33 -05:00
/// # Ok(())
/// # }
/// ```
pub fn resume<A, R>(&self, args: A) -> Result<R>
where
A: ToLuaMulti<'lua>,
R: FromLuaMulti<'lua>,
{
let lua = self.0.lua;
let mut args = args.to_lua_multi(lua)?;
let nargs = args.len() as c_int;
let results = unsafe {
let _sg = StackGuard::new(lua.state);
check_stack(lua.state, cmp::max(nargs + 1, 3))?;
let thread_state =
lua.ref_thread_exec(|ref_thread| ffi::lua_tothread(ref_thread, self.0.index));
let status = ffi::lua_status(thread_state);
if status != ffi::LUA_YIELD && ffi::lua_gettop(thread_state) == 0 {
return Err(Error::CoroutineInactive);
}
check_stack(thread_state, nargs)?;
for arg in args.drain_all() {
lua.push_value(arg)?;
}
ffi::lua_xmove(lua.state, thread_state, nargs);
2020-05-08 06:42:40 -05:00
let mut nresults = 0;
let ret = ffi::lua_resume(thread_state, lua.state, nargs, &mut nresults as *mut c_int);
if ret != ffi::LUA_OK && ret != ffi::LUA_YIELD {
protect_lua!(lua.state, 0, 0, |_| error_traceback(thread_state))?;
return Err(pop_error(thread_state, ret));
}
2021-11-14 17:27:20 -06:00
let mut results = args; // Reuse MultiValue container
check_stack(lua.state, nresults + 2)?; // 2 is extra for `lua.pop_value()` below
ffi::lua_xmove(thread_state, lua.state, nresults);
A lot of performance changes. Okay, so this is kind of a mega-commit of a lot of performance related changes to rlua, some of which are pretty complicated. There are some small improvements here and there, but most of the benefits of this change are from a few big changes. The simplest big change is that there is now `protect_lua` as well as `protect_lua_call`, which allows skipping a lightuserdata parameter and some stack manipulation in some cases. Second simplest is the change to use Vec instead of VecDeque for MultiValue, and to have MultiValue be used as a sort of "backwards-only" Vec so that ToLuaMulti / FromLuaMulti still work correctly. The most complex change, though, is a change to the way LuaRef works, so that LuaRef can optionally point into the Lua stack instead of only registry values. At state creation a set number of stack slots is reserved for the first N LuaRef types (currently 16), and space for these are also allocated separately allocated at callback time. There is a huge breaking change here, which is that now any LuaRef types MUST only be used with the Lua on which they were created, and CANNOT be used with any other Lua callback instance. This mostly will affect people using LuaRef types from inside a scope callback, but hopefully in those cases `Function::bind` will be a suitable replacement. On the plus side, the rules for LuaRef types are easier to state now. There is probably more easy-ish perf on the table here, but here's the preliminary results, based on my very limited benchmarks: create table time: [314.13 ns 315.71 ns 317.44 ns] change: [-36.154% -35.670% -35.205%] (p = 0.00 < 0.05) create array 10 time: [2.9731 us 2.9816 us 2.9901 us] change: [-16.996% -16.600% -16.196%] (p = 0.00 < 0.05) Performance has improved. create string table 10 time: [5.6904 us 5.7164 us 5.7411 us] change: [-53.536% -53.309% -53.079%] (p = 0.00 < 0.05) Performance has improved. call add function 3 10 time: [5.1134 us 5.1222 us 5.1320 us] change: [-4.1095% -3.6910% -3.1781%] (p = 0.00 < 0.05) Performance has improved. call callback add 2 10 time: [5.4408 us 5.4480 us 5.4560 us] change: [-6.4203% -5.7780% -5.0013%] (p = 0.00 < 0.05) Performance has improved. call callback append 10 time: [9.8243 us 9.8410 us 9.8586 us] change: [-26.937% -26.702% -26.469%] (p = 0.00 < 0.05) Performance has improved. create registry 10 time: [3.7005 us 3.7089 us 3.7174 us] change: [-8.4965% -8.1042% -7.6926%] (p = 0.00 < 0.05) Performance has improved. I think that a lot of these benchmarks are too "easy", and most API usage is going to be more like the 'create string table 10' benchmark, where there are a lot of handles and tables and strings, so I think that 25%-50% improvement is a good guess for most use cases.
2018-03-11 22:20:10 -05:00
for _ in 0..nresults {
results.push_front(lua.pop_value());
}
results
};
R::from_lua_multi(results, lua)
}
/// Gets the status of the thread.
pub fn status(&self) -> ThreadStatus {
let lua = self.0.lua;
unsafe {
let thread_state =
lua.ref_thread_exec(|ref_thread| ffi::lua_tothread(ref_thread, self.0.index));
let status = ffi::lua_status(thread_state);
if status != ffi::LUA_OK && status != ffi::LUA_YIELD {
ThreadStatus::Error
} else if status == ffi::LUA_YIELD || ffi::lua_gettop(thread_state) > 0 {
ThreadStatus::Resumable
} else {
ThreadStatus::Unresumable
}
}
}
2021-05-05 05:11:32 -05:00
/// Resets a thread
///
/// In [Lua 5.4]: cleans its call stack and closes all pending to-be-closed variables.
/// Returns a error in case of either the original error that stopped the thread or errors
/// in closing methods.
///
2022-03-23 16:13:48 -05:00
/// In [LuaJIT] and Luau: resets to the initial state of a newly created Lua thread.
2021-05-05 05:11:32 -05:00
/// Lua threads in arbitrary states (like yielded or errored) can be reset properly.
///
/// Sets a Lua function for the thread afterwards.
///
2022-03-23 16:13:48 -05:00
/// Requires `feature = "lua54"` OR `feature = "luajit,vendored"` OR `feature = "luau"`
2021-05-05 05:11:32 -05:00
///
/// [Lua 5.4]: https://www.lua.org/manual/5.4/manual.html#lua_resetthread
/// [LuaJIT]: https://github.com/openresty/luajit2#lua_resetthread
2022-03-23 16:13:48 -05:00
#[cfg(any(
feature = "lua54",
all(feature = "luajit", feature = "vendored"),
feature = "luau",
))]
2021-05-05 05:11:32 -05:00
pub fn reset(&self, func: Function<'lua>) -> Result<()> {
let lua = self.0.lua;
unsafe {
let _sg = StackGuard::new(lua.state);
check_stack(lua.state, 2)?;
lua.push_ref(&self.0);
let thread_state = ffi::lua_tothread(lua.state, -1);
2022-02-25 09:08:56 -06:00
#[cfg(feature = "lua54")]
let status = ffi::lua_resetthread(thread_state);
#[cfg(feature = "lua54")]
if status != ffi::LUA_OK {
return Err(pop_error(thread_state, status));
2021-05-05 05:11:32 -05:00
}
2022-02-25 09:08:56 -06:00
#[cfg(all(feature = "luajit", feature = "vendored"))]
ffi::lua_resetthread(lua.state, thread_state);
#[cfg(feature = "luau")]
ffi::lua_resetthread(thread_state);
2021-05-05 05:11:32 -05:00
lua.push_ref(&func.0);
ffi::lua_xmove(lua.state, thread_state, 1);
Ok(())
}
}
/// Converts Thread to an AsyncThread which implements [`Future`] and [`Stream`] traits.
///
/// `args` are passed as arguments to the thread function for first call.
/// The object calls [`resume()`] while polling and also allows to run rust futures
/// to completion using an executor.
///
/// Using AsyncThread as a Stream allows to iterate through `coroutine.yield()`
/// values whereas Future version discards that values and poll until the final
/// one (returned from the thread function).
///
2020-05-13 20:12:22 -05:00
/// Requires `feature = "async"`
///
/// [`Future`]: futures_core::future::Future
/// [`Stream`]: futures_core::stream::Stream
/// [`resume()`]: https://www.lua.org/manual/5.4/manual.html#lua_resume
///
/// # Examples
///
/// ```
/// # use mlua::{Lua, Result, Thread};
/// use futures::stream::TryStreamExt;
/// # #[tokio::main]
/// # async fn main() -> Result<()> {
/// # let lua = Lua::new();
/// let thread: Thread = lua.load(r#"
/// coroutine.create(function (sum)
/// for i = 1,10 do
/// sum = sum + i
/// coroutine.yield(sum)
/// end
/// return sum
/// end)
/// "#).eval()?;
///
/// let mut stream = thread.into_async::<_, i64>(1);
/// let mut sum = 0;
/// while let Some(n) = stream.try_next().await? {
/// sum += n;
/// }
///
/// assert_eq!(sum, 286);
///
/// # Ok(())
/// # }
/// ```
#[cfg(feature = "async")]
2020-12-29 19:43:00 -06:00
#[cfg_attr(docsrs, doc(cfg(feature = "async")))]
pub fn into_async<A, R>(self, args: A) -> AsyncThread<'lua, R>
where
A: ToLuaMulti<'lua>,
R: FromLuaMulti<'lua>,
{
2021-06-13 17:08:56 -05:00
let args = args.to_lua_multi(self.0.lua);
AsyncThread {
thread: self,
args0: RefCell::new(Some(args)),
ret: PhantomData,
recycle: false,
}
}
}
impl<'lua> PartialEq for Thread<'lua> {
fn eq(&self, other: &Self) -> bool {
self.0 == other.0
}
}
#[cfg(feature = "async")]
impl<'lua, R> AsyncThread<'lua, R> {
#[inline]
pub(crate) fn set_recyclable(&mut self, recyclable: bool) {
self.recycle = recyclable;
}
}
#[cfg(feature = "async")]
#[cfg(any(feature = "lua54", all(feature = "luajit", feature = "vendored")))]
impl<'lua, R> Drop for AsyncThread<'lua, R> {
fn drop(&mut self) {
if self.recycle {
2022-02-25 09:08:56 -06:00
unsafe {
self.thread.0.lua.recycle_thread(&mut self.thread);
}
}
}
}
#[cfg(feature = "async")]
impl<'lua, R> Stream for AsyncThread<'lua, R>
where
R: FromLuaMulti<'lua>,
{
type Item = Result<R>;
fn poll_next(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Option<Self::Item>> {
let lua = self.thread.0.lua;
match self.thread.status() {
ThreadStatus::Resumable => {}
_ => return Poll::Ready(None),
};
let _wg = WakerGuard::new(lua, cx.waker().clone());
let ret: MultiValue = if let Some(args) = self.args0.borrow_mut().take() {
self.thread.resume(args?)?
} else {
self.thread.resume(())?
};
if is_poll_pending(&ret) {
return Poll::Pending;
}
cx.waker().wake_by_ref();
Poll::Ready(Some(R::from_lua_multi(ret, lua)))
}
}
#[cfg(feature = "async")]
impl<'lua, R> Future for AsyncThread<'lua, R>
where
R: FromLuaMulti<'lua>,
{
type Output = Result<R>;
fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
let lua = self.thread.0.lua;
match self.thread.status() {
ThreadStatus::Resumable => {}
_ => return Poll::Ready(Err(Error::CoroutineInactive)),
};
let _wg = WakerGuard::new(lua, cx.waker().clone());
let ret: MultiValue = if let Some(args) = self.args0.borrow_mut().take() {
self.thread.resume(args?)?
} else {
self.thread.resume(())?
};
if is_poll_pending(&ret) {
return Poll::Pending;
}
if let ThreadStatus::Resumable = self.thread.status() {
// Ignore value returned via yield()
cx.waker().wake_by_ref();
return Poll::Pending;
}
Poll::Ready(R::from_lua_multi(ret, lua))
}
}
#[cfg(feature = "async")]
2021-09-20 06:38:08 -05:00
#[inline(always)]
fn is_poll_pending(val: &MultiValue) -> bool {
match val.iter().enumerate().last() {
Some((0, Value::LightUserData(ud))) => {
ud.0 == &ASYNC_POLL_PENDING as *const u8 as *mut c_void
}
_ => false,
}
}
#[cfg(feature = "async")]
struct WakerGuard<'lua> {
lua: &'lua Lua,
prev: Option<Waker>,
}
#[cfg(feature = "async")]
impl<'lua> WakerGuard<'lua> {
#[inline]
pub fn new(lua: &Lua, waker: Waker) -> Result<WakerGuard> {
unsafe {
let prev = lua.set_waker(Some(waker));
Ok(WakerGuard { lua, prev })
}
}
}
#[cfg(feature = "async")]
impl<'lua> Drop for WakerGuard<'lua> {
fn drop(&mut self) {
unsafe {
self.lua.set_waker(self.prev.take());
}
}
}